2个回答
展开全部
∫ xcos²x dx
= (1/2)∫ x(1+cos2x) dx
= (1/2)∫ xdx + (1/2)∫ xcos2x dx
= (1/2)(x²/2) + (1/4)∫ xcos2x d(2x)
= x²/4 + (1/4)∫ xd[∫ cos2x d(2x)] <= 这步可以不写,只因好让你明白
= x²/4 + (1/4)∫ xd(sin2x)
= x²/4 + (1/4)[xsin2x - ∫ sin2x dx],这里运用分部积分法:∫ udv = uv - ∫ vdu,u是比v复杂的函数
= x²/4 + (1/4)xsin2x - (1/8)∫ sin2x d(2x)
= x²/4 + (1/4)xsin2x - (1/8)(-cos2x) + C
= x²/4 + (1/4)xsin2x + (1/8)cos2x + C
= (1/2)∫ x(1+cos2x) dx
= (1/2)∫ xdx + (1/2)∫ xcos2x dx
= (1/2)(x²/2) + (1/4)∫ xcos2x d(2x)
= x²/4 + (1/4)∫ xd[∫ cos2x d(2x)] <= 这步可以不写,只因好让你明白
= x²/4 + (1/4)∫ xd(sin2x)
= x²/4 + (1/4)[xsin2x - ∫ sin2x dx],这里运用分部积分法:∫ udv = uv - ∫ vdu,u是比v复杂的函数
= x²/4 + (1/4)xsin2x - (1/8)∫ sin2x d(2x)
= x²/4 + (1/4)xsin2x - (1/8)(-cos2x) + C
= x²/4 + (1/4)xsin2x + (1/8)cos2x + C
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询