如图,抛物线y=-x2+bx+c与X轴交于A(1,0)、B(-3,0)两点 只要第三问的解释 详细啊!! 今晚就要啊
(1)求该抛物线的解析式(2)设(1)中的抛物线交y轴于点C,在该抛物线的对称轴上是否存在点Q,使得△QAC的周长最小?若存在,求出点Q坐标,若不存在,请说明理由(3)在...
(1)求该抛物线的解析式
(2)设(1)中的抛物线交y轴于点C,在该抛物线的对称轴上是否存在点Q,使得△QAC的周长最小?若存在,求出点Q坐标,若不存在,请说明理由
(3)在第二象限的抛物线上是否存在一点P,是△PBC的面积最大?若存在,求出点P坐标及△PBC面积的最大值;若不存在,请说明理由 展开
(2)设(1)中的抛物线交y轴于点C,在该抛物线的对称轴上是否存在点Q,使得△QAC的周长最小?若存在,求出点Q坐标,若不存在,请说明理由
(3)在第二象限的抛物线上是否存在一点P,是△PBC的面积最大?若存在,求出点P坐标及△PBC面积的最大值;若不存在,请说明理由 展开
展开全部
解①依题意可知方程-x²+bx+c=0的两个根是x1=1 x2=-3
即方程x²-bx-c=0的两个根为1和-3
由韦达定理 b=1-3=-2 -c=1×(-3) c=3
所以抛物线的解析式为y=-x²-2x+3
②存在
设C关于抛物线对称轴对称的点位D
令x=0由抛物线的解析式可以求得C的坐标为(0,3)
再令-x²-2x+3=3 (C和D的纵坐标都是3)
解得x=0或-2
即D得坐标为(-2,3)
因为C、D关于对称轴x=-1对称
Q是对对称轴上的一点
于是有CQ=DQ (这一步尤为关键)
△QAC的周长C=CQ+QA+AC=DQ+QA+AC
当点D、Q、A三点在一条直线上时,周长C最短 (画图配合,就能明白)
因为D(-2,3),A(1,0) 求得直线DA的表达式为y=-x+1
直线DA与对称轴x=-1交于(-1,2) 该点即为使得△QAC周长最短的Q点
③设P到直线BC的距离为d
于是△PBC的面积的面积S=1/2×d×|BC|
|BC|的长度固定,于是题目转变成为抛物线上是否有一点P距直线BC的距离最大。
显然是存在的,
不妨过第二象限内抛物线上的点作直线BC的平行线
可以找到P'与抛物线相切,此时P‘距直线BC的距离是最大的。
因此在第二象限呢存在一点P,使得△PBC的面积最大。
(题目没有要求求出P的坐标,可以不求。若你想求出来的话可以通过二次函数的导数等于直线BC的斜率确定出P点的坐标)
即方程x²-bx-c=0的两个根为1和-3
由韦达定理 b=1-3=-2 -c=1×(-3) c=3
所以抛物线的解析式为y=-x²-2x+3
②存在
设C关于抛物线对称轴对称的点位D
令x=0由抛物线的解析式可以求得C的坐标为(0,3)
再令-x²-2x+3=3 (C和D的纵坐标都是3)
解得x=0或-2
即D得坐标为(-2,3)
因为C、D关于对称轴x=-1对称
Q是对对称轴上的一点
于是有CQ=DQ (这一步尤为关键)
△QAC的周长C=CQ+QA+AC=DQ+QA+AC
当点D、Q、A三点在一条直线上时,周长C最短 (画图配合,就能明白)
因为D(-2,3),A(1,0) 求得直线DA的表达式为y=-x+1
直线DA与对称轴x=-1交于(-1,2) 该点即为使得△QAC周长最短的Q点
③设P到直线BC的距离为d
于是△PBC的面积的面积S=1/2×d×|BC|
|BC|的长度固定,于是题目转变成为抛物线上是否有一点P距直线BC的距离最大。
显然是存在的,
不妨过第二象限内抛物线上的点作直线BC的平行线
可以找到P'与抛物线相切,此时P‘距直线BC的距离是最大的。
因此在第二象限呢存在一点P,使得△PBC的面积最大。
(题目没有要求求出P的坐标,可以不求。若你想求出来的话可以通过二次函数的导数等于直线BC的斜率确定出P点的坐标)
展开全部
使△PBC的面积最大,即抛物线上到直线BC距离最远,做BC的平行线y=x+b
带入抛物线:x²+3x+b-3=0
判别式=0
9=4(b-3) ,b=21/4
直线:y=x+ 21/4 和抛物线的交点P(-3/2 ,15/4)
到BC的距离=(21/4 -3 )/√2
BC=3√2
S△PBC=27/8
带入抛物线:x²+3x+b-3=0
判别式=0
9=4(b-3) ,b=21/4
直线:y=x+ 21/4 和抛物线的交点P(-3/2 ,15/4)
到BC的距离=(21/4 -3 )/√2
BC=3√2
S△PBC=27/8
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
若要使面积最大,点P到直线BC的距离就要最大
C(0,3) 直线BC的方程式为y=-x+3 即x+y-3=0
设P(x,y) 点P到直线BC的距离为d=(x+y-3)/2(1/2) 注意要加绝对值
又因为P在抛物线上,所以y=-x2+2x+3
则x+y-3=-x2+3x+3=-(x-3/2)2+21/4
所以当x=1.5时面积有最大值
C(0,3) 直线BC的方程式为y=-x+3 即x+y-3=0
设P(x,y) 点P到直线BC的距离为d=(x+y-3)/2(1/2) 注意要加绝对值
又因为P在抛物线上,所以y=-x2+2x+3
则x+y-3=-x2+3x+3=-(x-3/2)2+21/4
所以当x=1.5时面积有最大值
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询