代数几何与解析几何有什么区别?分别都是研究什么内容的?
展开全部
用代数的方法研究几何的思想,在继出现解析几何之后,又发展为几何学的另一个分支,这就是代数几何。代数几何学研究的对象是平面的代数曲线、空间的代数曲线和代数曲面。 代数几何学的兴起,主要是源于求解一般的多项式方程组,开展了由这种方程组的解答所构成的空间,也就是所谓代数簇的研究。解析几何学的出发点是引进了坐标系来表示点的位置,同样,对于任何一种代数簇也可以引进坐标,因此,坐标法就成为研究代数几何学的一个有力的工具。
解析几何包括平面解析几何和立体解析几何两部分。平面解析几何通过平面直角坐标系,建立点与实数对之间的一一对应关粗高系,以及曲线与方程之间的一一对应关系,运用代数方法研究几何问题,或用几何方法研究代数问题。17世纪以来,由于航海、天文、力学、军事、生产的发展,以及初等几启芦何和初等代数的迅速发展,促进了解析几何的建立,并被广泛应用岩旁尺于数学的各个分支。在解析几何创立以前,几何与代数是彼此独立的两个分支。解析几何的建立第一次真正实现了几何方法与代数方法的结合,使形与数统一起来,这是数学发展史上的一次重大突破。 笛卡尔作为变量数学发展的第一个决定性步骤,解析几何的建立对于微积分的诞生有着不可估量的作用。
解析几何包括平面解析几何和立体解析几何两部分。平面解析几何通过平面直角坐标系,建立点与实数对之间的一一对应关粗高系,以及曲线与方程之间的一一对应关系,运用代数方法研究几何问题,或用几何方法研究代数问题。17世纪以来,由于航海、天文、力学、军事、生产的发展,以及初等几启芦何和初等代数的迅速发展,促进了解析几何的建立,并被广泛应用岩旁尺于数学的各个分支。在解析几何创立以前,几何与代数是彼此独立的两个分支。解析几何的建立第一次真正实现了几何方法与代数方法的结合,使形与数统一起来,这是数学发展史上的一次重大突破。 笛卡尔作为变量数学发展的第一个决定性步骤,解析几何的建立对于微积分的诞生有着不可估量的作用。
更多追问追答
追问
那么说解析几何与代数几何都是用代数分析几何图形,都是用函数方程(坐标方程)分析曲线或曲面,那为什么要分为两大不同的学科呢?你还是没说出他们不同究竟在哪,而且这些我在百度百科里已经看过,希望能有自己的答案,自己的语言解释清楚,谢绝抄袭。
追答
简单的说、代数几何就是求面积、体积、等等计算类的;解析几何就是用已知条件证明、比如线面平行、垂直、角度等等、
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询
广告 您可能关注的内容 |