如图①,直线AB与x轴负半轴、y轴正半轴分别交于A、B两点.OA、OB的长度分别为a和b,且满足a2-2ab+b2=0
如图①,直线AB与x轴负半轴、y轴正半轴分别交于A、B两点.OA、OB的长度分别为a和b,且满足a2-2ab+b2=0.(1)判断△AOB的形状.(2)如图②,正比例函数...
如图①,直线AB与x轴负半轴、y轴正半轴分别交于A、B两点.OA、OB的长度分别为a和b,且满足a2-2ab+b2=0.
(1)判断△AOB的形状.
(2)如图②,正比例函数y=kx(k<0)的图象与直线AB交于点Q,过A、B两点分别作AM⊥OQ于M,BN⊥OQ于N,若AM=9,BN=4,求MN的长.
(3)如图③,E为AB上一动点,以AE为斜边作等腰直角△ADE,P为BE的中点,连接PD、PO,试问:线段PD、PO是否存在某种确定的数量关系和位置关系?写出你的结论并证明. 展开
(1)判断△AOB的形状.
(2)如图②,正比例函数y=kx(k<0)的图象与直线AB交于点Q,过A、B两点分别作AM⊥OQ于M,BN⊥OQ于N,若AM=9,BN=4,求MN的长.
(3)如图③,E为AB上一动点,以AE为斜边作等腰直角△ADE,P为BE的中点,连接PD、PO,试问:线段PD、PO是否存在某种确定的数量关系和位置关系?写出你的结论并证明. 展开
2011-12-25
展开全部
⑴∵a2-2ab+b2=0.
∵﹙a-b﹚²=0,∴a=b
∵∠AOB=90
∴△AOB为等腰直角。
⑵∵∠MOA+∠MAO=90,∠MOA+∠MOB=90
∴∠MAO=∠MOB
∵AM⊥OQ,BN⊥OQ
∴∠AMO=90=∠BNO
在△MAO和△BON,
∠MAO=∠MOB,
∠AMO=∠BNO,
OA=OB
∴△MAO≌△BON(AAS)
∴OM=BN,AM=ON,OM=BN,
∴MN=ON-OM=AM-BN=5
(3)PO=PD且PO⊥PD,
延长DP到点C,使DP=PC,连接OD、OC、BC,
在△DEP和△CBP, .
∴△DEP≌△CBP,
∴CB=DE=DA,∠DEP=∠CBP=135°,
在△OAD和△OBC,
∴△OAD≌△OBC,
∴OD=OC,∠AOD=∠COB,
∴△DOC为等腰直角三角形,
∴PO=PD,且PO⊥PD
O(∩_∩)O
∵﹙a-b﹚²=0,∴a=b
∵∠AOB=90
∴△AOB为等腰直角。
⑵∵∠MOA+∠MAO=90,∠MOA+∠MOB=90
∴∠MAO=∠MOB
∵AM⊥OQ,BN⊥OQ
∴∠AMO=90=∠BNO
在△MAO和△BON,
∠MAO=∠MOB,
∠AMO=∠BNO,
OA=OB
∴△MAO≌△BON(AAS)
∴OM=BN,AM=ON,OM=BN,
∴MN=ON-OM=AM-BN=5
(3)PO=PD且PO⊥PD,
延长DP到点C,使DP=PC,连接OD、OC、BC,
在△DEP和△CBP, .
∴△DEP≌△CBP,
∴CB=DE=DA,∠DEP=∠CBP=135°,
在△OAD和△OBC,
∴△OAD≌△OBC,
∴OD=OC,∠AOD=∠COB,
∴△DOC为等腰直角三角形,
∴PO=PD,且PO⊥PD
O(∩_∩)O
展开全部
解:(1)a² - 2ab + b² = 0
(a - b)² = 0
a = b 即OA = OB
又∠AOB = 90° ∴ △AOB为等腰直角三角形
(2)图②中的AB与图①中的AB是一回事吗?求MN必须知道AB的长
(a - b)² = 0
a = b 即OA = OB
又∠AOB = 90° ∴ △AOB为等腰直角三角形
(2)图②中的AB与图①中的AB是一回事吗?求MN必须知道AB的长
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
(2)如图②,正比例函数y=kx(k<0)的图象与直线AB交于点Q,过A、B两点分别作AM⊥OQ于M,BN⊥OQ于N,若AM=9,BN=4,求MN的长.
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询