如何证明∫[0,π]xf(sinx)dx=π∫[0,π/2]f(sinx)dx

教育小百科达人
2019-04-01 · TA获得超过156万个赞
知道大有可为答主
回答量:8828
采纳率:99%
帮助的人:476万
展开全部

如图所示:

如果上限x在区间[a,b]上任意变动,则对于每一个取定的x值,定积分有一个对应值,所以它在[a,b]上定义了一个函数,这就是积分变限函数

扩展资料:

积分变上限函数和积分变下限函数统称积分变限函数。上式为积分变上限函数的表达式,当x与a位置互换后即为积分变下限函数的表达式,所以我们只讨论积分变上限函数即可。

积分变限函数与以前所接触到的所有函数形式都很不一样。首先,它是由定积分来定义的;其次,这个函数的自变量出现在积分上限或积分下限。

若函数f(x)在区间[a,b]上连续,则积分变上限函数就是f(x)在[a,b]上的一个原函数

连续函数,一定存在定积分和不定积分;若在有限区间[a,b]上只有有限个间断点且函数有界,则定积分存在;若有跳跃、可去、无穷间断点,则原函数一定不存在,即不定积分一定不存在。

参考资料来源:百度百科—— 积分变限函数

baochuankui888
高粉答主

2018-12-01 · 醉心答题,欢迎关注
知道答主
回答量:60
采纳率:100%
帮助的人:9652
展开全部

计算∫[π/2,π]xf(sinx)dx

令x=π-t 得

∫[π/2,π]xf(sinx)dx

=∫[π/2,0] (π-t)f(sin(π-t))d(π-t)

=∫[0,π/2] (π-t)f(sint)dt

=π∫[0,π/2] f(sint)dt-∫[0,π/2]t f(sint)dt∫[0,π]xf(sinx)dx

=∫[0,π/2]t f(sint)dt+∫[π/2,π]xf(sinx)dx

=π∫[0,π/2]f(sint)dt

扩展资料:

性质

1、当a=b时, 

2、当a>b时, 

3、常数可以提到积分号前。

4、代数和的积分等于积分的代数和。

5、定积分的可加性:如果积分区间[a,b]被c分为两个子区间[a,c]与[c,b]则有又由于性质2,若f(x)在区间D上可积,区间D中任意c(可以不在区间[a,b]上)满足条件。

6、如果在区间[a,b]上,f(x)≥0,则

7、积分中值定理:设f(x)在[a,b]上连续,则至少存在一点ε在(a,b)内使

参考资料:百度百科——定积分

已赞过 已踩过<
你对这个回答的评价是?
评论 收起
MLxuejian
2011-12-23 · TA获得超过275个赞
知道小有建树答主
回答量:95
采纳率:0%
帮助的人:104万
展开全部

如图

本回答被提问者采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
artintin
2011-12-23 · TA获得超过1.2万个赞
知道大有可为答主
回答量:7508
采纳率:80%
帮助的人:2880万
展开全部
计算∫[π/2,π]xf(sinx)dx
令x=π-t 得
∫[π/2,π]xf(sinx)dx=∫[π/2,0] (π-t)f(sin(π-t))d(π-t)
=∫[0,π/2] (π-t)f(sint)dt=π∫[0,π/2] f(sint)dt-∫[0,π/2]t f(sint)dt
∫[0,π]xf(sinx)dx=∫[0,π/2]t f(sint)dt+∫[π/2,π]xf(sinx)dx=π∫[0,π/2]f(sint)dt
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
522597089
2011-12-23 · TA获得超过6787个赞
知道大有可为答主
回答量:1170
采纳率:75%
帮助的人:814万
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 更多回答(3)
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式