
已知函数f(x)满足f(x+y)=f(x)+f(y)+xy(x+y),又f'(0)=1,则函数f(x)的解析式为
展开全部
x=y=0 f(0)=f(0)+f(0)+0 f(0)=0
f(x+y)-f(x)=f(y)+xy(x+y)
f'(x)=lim y->0 [f(x+y)-f(x)]/y=lim [f(y)/y+x(x+y)]=f'(0)+x^2=1+x^2
因此f(x)=积分[1+x^2]dx=x+x^3/3+C
又f(0)=0 得C=0
因此 f(x)=x+x^3/3
f(x+y)-f(x)=f(y)+xy(x+y)
f'(x)=lim y->0 [f(x+y)-f(x)]/y=lim [f(y)/y+x(x+y)]=f'(0)+x^2=1+x^2
因此f(x)=积分[1+x^2]dx=x+x^3/3+C
又f(0)=0 得C=0
因此 f(x)=x+x^3/3
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询