抛物线一些公式的证明,希望有人能替我解答一下,如下

过抛物线y^2=2px(p>0)焦点F作倾斜角为θ的直线L,L与抛物线相交于A(x1,y1),B(x2,y2),有①x1*x2=p^2/4,y1*y2=—P^2,要在直线... 过抛物线y^2=2px(p>0)焦点F作倾斜角为θ的直线L,L与抛物线相交于A(x1,y1),B(x2,y2),有   ① x1*x2 = p^2/4 , y1*y2 = —P^2,要在直线过焦点时才能成立   ② 焦点弦长:|AB| = x1+x2+P = 2P/[(sinθ)^2]   ③ (1/|FA|)+(1/|FB|)= 2/P 展开
wangzhuode
2011-12-24 · TA获得超过1.1万个赞
知道大有可为答主
回答量:1729
采纳率:0%
帮助的人:2409万
展开全部
设直线为
y=k(x-p/2) ①
抛物线为
y^2=2px ②
由上两式可得
k^2y^2/2p-y-pk/2=0 . ③
由③可知
y1y2=-p^2
由①③可知
y1y2=k^2[x1x2-p/2*(x1+x2)+p^2/4]
又x1+x2=(y1+y2)/k-p
由上带入可得
x1x2= p^2/4
弦长:|AB| = x1+x2+p不用说了吧,
至于|AB| = 2p/(sinθ)^2,由弦长公式
|AB|=√(1+1/k^2)[(y1+y2)^2-4y1y2] ④
带入③式可得
|AB|=|2p(1+k^2/k^2 令k=tanθ
解得|AB|=2p/(sinθ)^2
1/|FA|+1/|FB|=(|FA|+|FB|)/|FA| |FB|=(x1+x2+p)/(x1+p/2)(x2+p/2)
=(x1+x2+p)/[x1x2+p/2(x1+x2)+p^2/4]
带入①③以及已证结论x1x2= p^2/4
解得1/|FA|+1/|FB|=2/p

还有疑问请提,For the lich king
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式