
如图10所示,已知Rt△ABC≌Rt△ADE, ∠ABC=∠ADE
4个回答
展开全部
是不(2)证法一:连接CE,
∵Rt△ABC≌Rt△ADE,
∴AC=AE.
∴∠ACE=∠AEC(等边对等角).
又∵Rt△ABC≌Rt△ADE,
∴∠ACB=∠AED.
∴∠ACE-∠ACB=∠AEC-∠AED.
即∠BCE=∠DEC.
∴CF=EF.
证法二:∵Rt△ABC≌Rt△ADE,
∴AC=AE,AD=AB,∠CAB=∠EAD,
∴∠CAB-∠DAB=∠EAD-∠DAB.
即∠CAD=∠EAB.
∴△CAD≌△EAB,
∴CD=EB,∠ADC=∠ABE.
又∵∠ADE=∠ABC,
∴∠CDF=∠EBF.
又∵∠DFC=∠BFE,
∴△CDF≌△EBF(AAS).
∴CF=EF.
证法三:连接AF,
∵Rt△ABC≌Rt△ADE,
∴AB=AD,BC=DE,∠ABC=∠ADE=90°.
又∵AF=AF,
∴Rt△ABF≌Rt△ADF(HL).
∴BF=DF.
又∵BC=DE,
∴BC-BF=DE-DF.
即CF=EF.是八年级
∵Rt△ABC≌Rt△ADE,
∴AC=AE.
∴∠ACE=∠AEC(等边对等角).
又∵Rt△ABC≌Rt△ADE,
∴∠ACB=∠AED.
∴∠ACE-∠ACB=∠AEC-∠AED.
即∠BCE=∠DEC.
∴CF=EF.
证法二:∵Rt△ABC≌Rt△ADE,
∴AC=AE,AD=AB,∠CAB=∠EAD,
∴∠CAB-∠DAB=∠EAD-∠DAB.
即∠CAD=∠EAB.
∴△CAD≌△EAB,
∴CD=EB,∠ADC=∠ABE.
又∵∠ADE=∠ABC,
∴∠CDF=∠EBF.
又∵∠DFC=∠BFE,
∴△CDF≌△EBF(AAS).
∴CF=EF.
证法三:连接AF,
∵Rt△ABC≌Rt△ADE,
∴AB=AD,BC=DE,∠ABC=∠ADE=90°.
又∵AF=AF,
∴Rt△ABF≌Rt△ADF(HL).
∴BF=DF.
又∵BC=DE,
∴BC-BF=DE-DF.
即CF=EF.是八年级
展开全部
新闻 网页 贴吧 知道 MP3 图片 视频 百科 文库 帮助 | 设置
百度知道 > 教育/科学 > 理工学科 > 数学
如图10所示,已知Rt△ABC≌Rt△ADE, ∠ABC=∠ADE 检举 | 离问题结束还有 6 小时 提问者:卤素灯泡 | 浏览次数:31次
输入内容已经达到长度限制还能输入 9999 字插入图片删除图片插入地图删除地图插入视频视频地图回答即可得2分经验值,回答被采纳可同步增加经验值和财富值
参考资料:匿名回答提交回答取消
回答 共2条
检举 | 2011-12-23 22:24 trout537 | 二级
如图Rt△ABC中,∠C=Rt∠,AC=BC,BD平分∠ABC,DE⊥AB于E,已知AB=8cm,因为BD是角平分线所以CD=DE(角平分线上的点到角两边距离相等)在RT三角形 赞同0| 评论 检举 | 2012-1-5 19:46 自由像风儿 | 二级
是不(2)证法一:连接CE,
∵Rt△ABC≌Rt△ADE,
∴AC=AE.
∴∠ACE=∠AEC(等边对等角).
又∵Rt△ABC≌Rt△ADE,
∴∠ACB=∠AED.
∴∠ACE-∠ACB=∠AEC-∠AED.
百度知道 > 教育/科学 > 理工学科 > 数学
如图10所示,已知Rt△ABC≌Rt△ADE, ∠ABC=∠ADE 检举 | 离问题结束还有 6 小时 提问者:卤素灯泡 | 浏览次数:31次
输入内容已经达到长度限制还能输入 9999 字插入图片删除图片插入地图删除地图插入视频视频地图回答即可得2分经验值,回答被采纳可同步增加经验值和财富值
参考资料:匿名回答提交回答取消
回答 共2条
检举 | 2011-12-23 22:24 trout537 | 二级
如图Rt△ABC中,∠C=Rt∠,AC=BC,BD平分∠ABC,DE⊥AB于E,已知AB=8cm,因为BD是角平分线所以CD=DE(角平分线上的点到角两边距离相等)在RT三角形 赞同0| 评论 检举 | 2012-1-5 19:46 自由像风儿 | 二级
是不(2)证法一:连接CE,
∵Rt△ABC≌Rt△ADE,
∴AC=AE.
∴∠ACE=∠AEC(等边对等角).
又∵Rt△ABC≌Rt△ADE,
∴∠ACB=∠AED.
∴∠ACE-∠ACB=∠AEC-∠AED.
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
证法一:连接CE,
∵Rt△ABC≌Rt△ADE,
∴AC=AE.
∴∠ACE=∠AEC.
又∵Rt△ABC≌Rt△ADE,
∴∠ACB=∠AED.
∴∠ACE=∠ACB=∠AEC-∠AED.
即∠BCE=∠DEC.
∴CF=EF.
证法二:∵Rt△ABC≌Rt△ADE,
∴AC=AE,AD=AB,∠CAB=∠EAD,
∴∠CAB-∠DAB=∠EAD-∠DAB.
即∠CAD=∠EAB.
∴CD=EB,∠ADC=∠ABE.
又∵∠ADE=∠ABC,
∴∠CDF=∠EBF.
又∵∠DFC=∠BFE,
∴△CDF≌△EBF.
∴CF=EF.
证法三:连接AF,
∵Rt△ABC≌Rt△ADE,
∴AB=AD,BC=DE,∠ABC=∠ADE=90°.
又∵AF=AF,
∴Rt△ABF≌Rt△ADF(HL).
∴BF=DF.
又∵BC=DE,
∴BC-BF=DE-DF.
即CF=EF.
∵Rt△ABC≌Rt△ADE,
∴AC=AE.
∴∠ACE=∠AEC.
又∵Rt△ABC≌Rt△ADE,
∴∠ACB=∠AED.
∴∠ACE=∠ACB=∠AEC-∠AED.
即∠BCE=∠DEC.
∴CF=EF.
证法二:∵Rt△ABC≌Rt△ADE,
∴AC=AE,AD=AB,∠CAB=∠EAD,
∴∠CAB-∠DAB=∠EAD-∠DAB.
即∠CAD=∠EAB.
∴CD=EB,∠ADC=∠ABE.
又∵∠ADE=∠ABC,
∴∠CDF=∠EBF.
又∵∠DFC=∠BFE,
∴△CDF≌△EBF.
∴CF=EF.
证法三:连接AF,
∵Rt△ABC≌Rt△ADE,
∴AB=AD,BC=DE,∠ABC=∠ADE=90°.
又∵AF=AF,
∴Rt△ABF≌Rt△ADF(HL).
∴BF=DF.
又∵BC=DE,
∴BC-BF=DE-DF.
即CF=EF.
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
证法一:连接CE, ∵Rt△ABC≌Rt△ADE, ∴AC=AE. ∴∠ACE=∠AEC. 又∵Rt△ABC≌Rt△ADE, ∴∠ACB=∠AED. ∴∠ACE=∠ACB=∠AEC-∠AED. 即∠BCE=∠DEC. ∴CF=EF.
证法二:∵Rt△ABC≌Rt△ADE, ∴AC=AE,AD=AB,∠CAB=∠EAD, ∴∠CAB-∠DAB=∠EAD-∠DAB. 即∠CAD=∠EAB. ∴CD=EB,∠ADC=∠ABE. 又∵∠ADE=∠ABC, ∴∠CDF=∠EBF. 又∵∠DFC=∠BFE, ∴△CDF≌△EBF. ∴CF=EF.
证法三:连接AF, ∵Rt△ABC≌Rt△ADE, ∴AB=AD,BC=DE,∠ABC=∠ADE=90°. 又∵AF=AF, ∴Rt△ABF≌Rt△ADF(HL). ∴BF=DF. 又∵BC=DE, ∴BC-BF=DE-DF. 即CF=EF.
证法二:∵Rt△ABC≌Rt△ADE, ∴AC=AE,AD=AB,∠CAB=∠EAD, ∴∠CAB-∠DAB=∠EAD-∠DAB. 即∠CAD=∠EAB. ∴CD=EB,∠ADC=∠ABE. 又∵∠ADE=∠ABC, ∴∠CDF=∠EBF. 又∵∠DFC=∠BFE, ∴△CDF≌△EBF. ∴CF=EF.
证法三:连接AF, ∵Rt△ABC≌Rt△ADE, ∴AB=AD,BC=DE,∠ABC=∠ADE=90°. 又∵AF=AF, ∴Rt△ABF≌Rt△ADF(HL). ∴BF=DF. 又∵BC=DE, ∴BC-BF=DE-DF. 即CF=EF.
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询