
在三角形ABC中,三内角 ABC三边abc,满足sin(A+B)分之sin(A-B)=c分之b+c
1个回答
展开全部
解:
(1)∵△ABC中,三内角 ABC对应三边abc
∴由正弦定理得a/sinA=b/sinB=c/sinC
∵sin(A-B)/sin(A+B)=(b+c)/c
A+B=π-C
∴sin(A-B)/sin(C)=(sin(B)+sin(A+B))/sin(C)
两边同时消去sin(C),展开得
sinAcosB-sinBcosA=sinB+sinAcosB+sinBcosA
化简得cosA=-1/2
∵A∈(0,π)
∴A=2/3π
(2)∵由正弦定理得a/sinA=b/sinB=c/sinC=2R=4√3
∴b=4√3sinB,c=4√3sinC=4√3(sin(π/3-B))=2√3cosB-6sinB
∴面积S=1/2bc×sinA
带入得
当B=6/π,S最大,为3√3
(1)∵△ABC中,三内角 ABC对应三边abc
∴由正弦定理得a/sinA=b/sinB=c/sinC
∵sin(A-B)/sin(A+B)=(b+c)/c
A+B=π-C
∴sin(A-B)/sin(C)=(sin(B)+sin(A+B))/sin(C)
两边同时消去sin(C),展开得
sinAcosB-sinBcosA=sinB+sinAcosB+sinBcosA
化简得cosA=-1/2
∵A∈(0,π)
∴A=2/3π
(2)∵由正弦定理得a/sinA=b/sinB=c/sinC=2R=4√3
∴b=4√3sinB,c=4√3sinC=4√3(sin(π/3-B))=2√3cosB-6sinB
∴面积S=1/2bc×sinA
带入得
当B=6/π,S最大,为3√3
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询