怎么求解中考数学压轴题
10个回答
2016-01-01 · 知道合伙人人力资源行家
518姚峰峰
知道合伙人人力资源行家
向TA提问 私信TA
知道合伙人人力资源行家
采纳数:50865
获赞数:564215
大学班长,中共党员。一次性通过英语四六级及计算机二级,现任公司综合办主任。为百度金榜题名时团队团长。
向TA提问 私信TA
关注
展开全部
两大秘诀解决中考数学压轴题:
一、解中考数学压轴题秘诀(一)
数学综合题关键是第24题和25题,我们不妨把它分为函数型综合题和几何型综合题。
(一)函数型综合题:是先给定直角坐标系和几何图形,求(已知)函数的解析式(即在求解前已知函数的类型),然后进行图形的研究,求点的坐标或研究图形的某些性质。初中已知函数有:①一次函数(包括正比例函数)和常值函数,它们所对应的图像是直线;②反比例函数,它所对应的图像是双曲线;③二次函数,它所对应的图像是抛物线。求已知函数的解析式主要方法是待定系数法,关键是求点的坐标,而求点的坐标基本方法是几何法(图形法)和代数法(解析法)。此类题基本在第24题,满分12分,基本分2-3小题来呈现。
(二)几何型综合题:是先给定几何图形,根据已知条件进行计算,然后有动点(或动线段)运动,对应产生线段、面积等的变化,求对应的(未知)函数的解析式(即在没有求出之前不知道函数解析式的形式是什么)和求函数的定义域,最后根据所求的函数关系进行探索研究,一般有:在什么条件下图形是等腰三角形、直角三角形、四边形是菱形、梯形等或探索两个三角形满足什么条件相似等或探究线段之间的位置关系等或探索面积之间满足一定关系求x的值等和直线(圆)与圆的相切时求自变量的值等。求未知函数解析式的关键是列出包含自变量和因变量之间的等量关系(即列出含有x、y的方程),变形写成y=f(x)的形式。一般有直接法(直接列出含有x和y的方程)和复合法(列出含有x和y和第三个变量的方程,然后求出第三个变量和x之间的函数关系式,代入消去第三个变量,得到y=f(x)的形式),当然还有参数法,这个已超出初中数学教学要求。找等量关系的途径在初中主要有利用勾股定理、平行线截得比例线段、三角形相似、面积相等方法。求定义域主要是寻找图形的特殊位置(极限位置)和根据解析式求解。而最后的探索问题千变万化,但少不了对图形的分析和研究,用几何和代数的方法求出x的值。几何型综合题基本在第25题做为压轴题出现,满分14分,一般分三小题呈现。
在解数学综合题时我们要做到:数形结合记心头,大题小作来转化,潜在条件不能忘,化动为静多画图,分类讨论要严密,方程函数是工具,计算推理要严谨,创新品质得提高。
二、解中考数学压轴题秘诀(二)
具有选拔功能的中考压轴题是为考察考生综合运用知识的能力而设计的题目,其特点是知识点多,覆盖面广,条件隐蔽,关系复杂,思路难觅,解法灵活。解数学压轴题,一要树立必胜的信心,二要具备扎实的基础知识和熟练的基本技能,三要掌握常用的解题策略。现介绍几种常用的解题策略,供初三同学参考。
1、以坐标系为桥梁,运用数形结合思想:
纵观最近几年各地的中考压轴题,绝大部分都是与坐标系有关的,其特点是通过建立点与数即坐标之间的对应关系,一方面可用代数方法研究几何图形的性质,另一方面又可借助几何直观,得到某些代数问题的解答。
2、以直线或抛物线知识为载体,运用函数与方程思想:
直线与抛物线是初中数学中的两类重要函数,即一次函数与二次函数所表示的图形。因此,无论是求其解析式还是研究其性质,都离不开函数与方程的思想。例如函数解析式的确定,往往需要根据已知条件列方程或方程组并解之而得。
3、利用条件或结论的多变性,运用分类讨论的思想:
分类讨论思想可用来检测学生思维的准确性与严密性,常常通过条件的多变性或结论的不确定性来进行考察,有些问题,如果不注意对各种情况分类讨论,就有可能造成错解或漏解,纵观近几年的中考压轴题分类讨论思想解题已成为新的热点。
4、综合多个知识点,运用等价转换思想:
任何一个数学问题的解决都离不开转换的思想,初中数学中的转换大体包括由已知向未知,由复杂向简单的转换,而作为中考压轴题,更注意不同知识之间的联系与转换,一道中考压轴题一般是融代数、几何、三角于一体的综合试题,转换的思路更要得到充分的应用。中考压轴题所考察的并非孤立的知识点,也并非个别的思想方法,它是对考生综合能力的一个全面考察,所涉及的知识面广,所使用的数学思想方法也较全面。因此有的考生对压轴题有一种恐惧感,认为自己的水平一般,做不了,甚至连看也没看就放弃了,当然也就得不到应得的分数,为了提高压轴题的得分率,考试中还需要有一种分题、分段的得分策略。
5、分题得分:中考压轴题一般在大题下都有两至三个小题,难易程度是第(1)小题较易,第(2)小题中等,第(3)小题偏难,在解答时要把第(1)小题的分数一定拿到,第(2)小题的分数要力争拿到,第(3)小题的分数要争取得到,这样就大大提高了获得中考数学高分的可能性。
6、分段得分:一道中考压轴题做不出来,不等于一点不懂,一点不会,要将片段的思路转化为得分点,因此,要强调分段得分,分段得分的根据是“分段评分”,中考的评分是按照题目所考察的知识点分段评分,踏上知识点就给分,多踏多给分。因此,对中考压轴题要理解多少做多少,最大限度地发挥自己的水平,把中考数学的压轴题变成最有价值的压台戏。
一、解中考数学压轴题秘诀(一)
数学综合题关键是第24题和25题,我们不妨把它分为函数型综合题和几何型综合题。
(一)函数型综合题:是先给定直角坐标系和几何图形,求(已知)函数的解析式(即在求解前已知函数的类型),然后进行图形的研究,求点的坐标或研究图形的某些性质。初中已知函数有:①一次函数(包括正比例函数)和常值函数,它们所对应的图像是直线;②反比例函数,它所对应的图像是双曲线;③二次函数,它所对应的图像是抛物线。求已知函数的解析式主要方法是待定系数法,关键是求点的坐标,而求点的坐标基本方法是几何法(图形法)和代数法(解析法)。此类题基本在第24题,满分12分,基本分2-3小题来呈现。
(二)几何型综合题:是先给定几何图形,根据已知条件进行计算,然后有动点(或动线段)运动,对应产生线段、面积等的变化,求对应的(未知)函数的解析式(即在没有求出之前不知道函数解析式的形式是什么)和求函数的定义域,最后根据所求的函数关系进行探索研究,一般有:在什么条件下图形是等腰三角形、直角三角形、四边形是菱形、梯形等或探索两个三角形满足什么条件相似等或探究线段之间的位置关系等或探索面积之间满足一定关系求x的值等和直线(圆)与圆的相切时求自变量的值等。求未知函数解析式的关键是列出包含自变量和因变量之间的等量关系(即列出含有x、y的方程),变形写成y=f(x)的形式。一般有直接法(直接列出含有x和y的方程)和复合法(列出含有x和y和第三个变量的方程,然后求出第三个变量和x之间的函数关系式,代入消去第三个变量,得到y=f(x)的形式),当然还有参数法,这个已超出初中数学教学要求。找等量关系的途径在初中主要有利用勾股定理、平行线截得比例线段、三角形相似、面积相等方法。求定义域主要是寻找图形的特殊位置(极限位置)和根据解析式求解。而最后的探索问题千变万化,但少不了对图形的分析和研究,用几何和代数的方法求出x的值。几何型综合题基本在第25题做为压轴题出现,满分14分,一般分三小题呈现。
在解数学综合题时我们要做到:数形结合记心头,大题小作来转化,潜在条件不能忘,化动为静多画图,分类讨论要严密,方程函数是工具,计算推理要严谨,创新品质得提高。
二、解中考数学压轴题秘诀(二)
具有选拔功能的中考压轴题是为考察考生综合运用知识的能力而设计的题目,其特点是知识点多,覆盖面广,条件隐蔽,关系复杂,思路难觅,解法灵活。解数学压轴题,一要树立必胜的信心,二要具备扎实的基础知识和熟练的基本技能,三要掌握常用的解题策略。现介绍几种常用的解题策略,供初三同学参考。
1、以坐标系为桥梁,运用数形结合思想:
纵观最近几年各地的中考压轴题,绝大部分都是与坐标系有关的,其特点是通过建立点与数即坐标之间的对应关系,一方面可用代数方法研究几何图形的性质,另一方面又可借助几何直观,得到某些代数问题的解答。
2、以直线或抛物线知识为载体,运用函数与方程思想:
直线与抛物线是初中数学中的两类重要函数,即一次函数与二次函数所表示的图形。因此,无论是求其解析式还是研究其性质,都离不开函数与方程的思想。例如函数解析式的确定,往往需要根据已知条件列方程或方程组并解之而得。
3、利用条件或结论的多变性,运用分类讨论的思想:
分类讨论思想可用来检测学生思维的准确性与严密性,常常通过条件的多变性或结论的不确定性来进行考察,有些问题,如果不注意对各种情况分类讨论,就有可能造成错解或漏解,纵观近几年的中考压轴题分类讨论思想解题已成为新的热点。
4、综合多个知识点,运用等价转换思想:
任何一个数学问题的解决都离不开转换的思想,初中数学中的转换大体包括由已知向未知,由复杂向简单的转换,而作为中考压轴题,更注意不同知识之间的联系与转换,一道中考压轴题一般是融代数、几何、三角于一体的综合试题,转换的思路更要得到充分的应用。中考压轴题所考察的并非孤立的知识点,也并非个别的思想方法,它是对考生综合能力的一个全面考察,所涉及的知识面广,所使用的数学思想方法也较全面。因此有的考生对压轴题有一种恐惧感,认为自己的水平一般,做不了,甚至连看也没看就放弃了,当然也就得不到应得的分数,为了提高压轴题的得分率,考试中还需要有一种分题、分段的得分策略。
5、分题得分:中考压轴题一般在大题下都有两至三个小题,难易程度是第(1)小题较易,第(2)小题中等,第(3)小题偏难,在解答时要把第(1)小题的分数一定拿到,第(2)小题的分数要力争拿到,第(3)小题的分数要争取得到,这样就大大提高了获得中考数学高分的可能性。
6、分段得分:一道中考压轴题做不出来,不等于一点不懂,一点不会,要将片段的思路转化为得分点,因此,要强调分段得分,分段得分的根据是“分段评分”,中考的评分是按照题目所考察的知识点分段评分,踏上知识点就给分,多踏多给分。因此,对中考压轴题要理解多少做多少,最大限度地发挥自己的水平,把中考数学的压轴题变成最有价值的压台戏。
展开全部
我刚上高一,下面我来给你传授我的经验:
基础题要重理解
在数学考卷中,“容易题”占80%,一般分布在第一、二大题(除第18题)和第三大题第19~23题。在中考复习最后阶段,适当进行“容易题”的操练,对提高中考成绩是有益的。但绝不要陷入“多多益善,盲目傻练”的误区,而要精选一些针对自己薄弱环节的题目进行有目的地练习。
据笔者了解,不少学校在复习中存在忽视过程的倾向,解客观题,即使解其中较难的题时也都只要求写出结果,不要求写出过程,一些同学甚至错了也不去反思错在哪里,这样做,是非常有害的。笔者认为,即使是题解简单的填空题也应当注重理解,反思解题方法,掌握解题过程。解选择题也一样,不要只看选对还是选错,要反问自己选择的依据和理由是什么。
当然,我们要求注重理解,并不意味着不要记忆,记忆水平的考查在历年中考命题中均占有一定的比重。所以必要的记忆是必须的,如代数中重要的法则、公式、特殊角的三角比的值以及几何中常见图形的定义、性质和常用的重要定理等都是应当记住的。
在复习的最后阶段,笔者建议同学们适当多做一些考查基础的“容易题”,这样做,虽然花的时间不多,但能及时发现知识缺陷,有利于查漏补缺,亡羊补牢。如果你能真正把这些“容易题”做对、做好,使得分率达到0.9甚至达到0.95以上,那么在中考中取得高分并非难事。
压轴题要重分析
中考要取得高分,攻克最后两道综合题是关键。很多年来,中考都是以函数和几何图形的综合作为压轴题的主要形式,用到三角形、四边形、和圆的有关知识。如果以为这是构造压轴题的唯一方式那就错了。方程式与图形的综合也是常见的综合方式。这类问题在外省市近年的中考试卷中也不乏其例。
动态几何问题又是一种新题型,在图形的变换过程中,探究图形中某些不变的因素,把操作、观察、探求、计算和证明融合在一起。在这类问题中,往往把锐角三角比作为几何计算的一种工具。它的重要作用有可能在压轴题中初露头角。总之,应对压轴题,决不能靠猜题、押题。
解压轴题,要注意分析它的逻辑结构,搞清楚它的各个小题之间的关系是“并列”的还是“递进”的,这一点非常重要。一般说来,如果综合题(1)、(2)、(3)小题是并列关系,它们分别以大题的已知为条件进行解题,(1)的结论与(2)的解题无关,同样(2)的结论与(3)的解题无关,整个大题由这三个小题“拼装”而成。如果是“递进”关系,(1)的结论又是解(2)所必要的条件之一,(3)与(2)也是同样的关系。在有些较难的综合题里,这两种关系经常是兼而有之。
说实在,现在流行的“压轴题”,真是难为我们的学生了。从今年各区的统考试卷看,有的压轴题的综合度太大,以至命题者自己在“参考答案”中表达解题过程都要用去一页A4纸还多,为了应付中考压轴题,有的题任意拔高了对数学思想方法的考查要求,如有些综合题第(2)、(3)两小题都要分好几种情况进行“分类讨论”,太过分了。
课程标准规定,在初中阶段只要求学生初步领会基本的数学思想方法。所以它在中考中也只能在考查基础知识、基本技能和基本方法中有所渗透和体现而已。希望命题者手下留情,不要以考查数学思想方法为名出难题,也不要再打“擦边球”,搞“深挖洞”了。笔者希望世博之年的中考数学卷能够将压轴题的难度从0.37、0.39基础上再下降一点,朝着得分率0.5左右靠拢,千万不要再“双压轴”了。
对一些在区统考的“压轴题”面前打了“败仗”的同学,我劝大家一定要振奋起精神,不要因为这次统考的压轴题不会做或得分过低而垂头丧气,在临考前应当把提高信心和勇气放在首位。笔者建议在总复习最后阶段,不要花过多的精力做大量的综合题,只要精选二十道左右(至多不超过三十道),不同类型、不同结构的综合题进行分析和思考就足够了,如果没有思路,时间又不多,那么看一遍别人的解答也好。
教师对不同的学生,不必强求一律,对有的学生可以只要求他做其中的第(1)题或第(2)题。盲目追“新”求“难”,忽视基础,用大量的复习时间去应付只占整卷10%的压轴题,其结果必然是得不偿失。事实证明:有相当一部分学生在压轴题的失分,并不是没有解题思路,而是错在非常基本的概念和简单的计算上,或是输在“审题”上。应当把功夫花在夯实基础、总结归纳、打通思路、总结规律、提高分析能力上。
笔者建议,同学们可以试着把一些中考压轴题分解为若干个“合题”,进行剪裁和组合,或把一些较难的“填空题”,升格为“简答题”,把一些“熟题”变式为“陌生题”让学生进行练习。这样做,花的时间不多,却能取得比较理想的效果,并且还能使学生的思路“活”起来,逐步达到遇到问题会分析,碰到沟坎,会灵活运用已经学过的知识去解决这样的较高水平。
总之,笔者以为在总复习阶段,对大部分学生而言,要有所为又要有所不为,有时放弃一些难题和大题,多做一些中档的变式题和小题,反而能使他们得益。当然,我们强调变式,不是乱变花样。其目的是促进对标准形式和基本图形的进一步认识和掌握。
基础题要重理解
在数学考卷中,“容易题”占80%,一般分布在第一、二大题(除第18题)和第三大题第19~23题。在中考复习最后阶段,适当进行“容易题”的操练,对提高中考成绩是有益的。但绝不要陷入“多多益善,盲目傻练”的误区,而要精选一些针对自己薄弱环节的题目进行有目的地练习。
据笔者了解,不少学校在复习中存在忽视过程的倾向,解客观题,即使解其中较难的题时也都只要求写出结果,不要求写出过程,一些同学甚至错了也不去反思错在哪里,这样做,是非常有害的。笔者认为,即使是题解简单的填空题也应当注重理解,反思解题方法,掌握解题过程。解选择题也一样,不要只看选对还是选错,要反问自己选择的依据和理由是什么。
当然,我们要求注重理解,并不意味着不要记忆,记忆水平的考查在历年中考命题中均占有一定的比重。所以必要的记忆是必须的,如代数中重要的法则、公式、特殊角的三角比的值以及几何中常见图形的定义、性质和常用的重要定理等都是应当记住的。
在复习的最后阶段,笔者建议同学们适当多做一些考查基础的“容易题”,这样做,虽然花的时间不多,但能及时发现知识缺陷,有利于查漏补缺,亡羊补牢。如果你能真正把这些“容易题”做对、做好,使得分率达到0.9甚至达到0.95以上,那么在中考中取得高分并非难事。
压轴题要重分析
中考要取得高分,攻克最后两道综合题是关键。很多年来,中考都是以函数和几何图形的综合作为压轴题的主要形式,用到三角形、四边形、和圆的有关知识。如果以为这是构造压轴题的唯一方式那就错了。方程式与图形的综合也是常见的综合方式。这类问题在外省市近年的中考试卷中也不乏其例。
动态几何问题又是一种新题型,在图形的变换过程中,探究图形中某些不变的因素,把操作、观察、探求、计算和证明融合在一起。在这类问题中,往往把锐角三角比作为几何计算的一种工具。它的重要作用有可能在压轴题中初露头角。总之,应对压轴题,决不能靠猜题、押题。
解压轴题,要注意分析它的逻辑结构,搞清楚它的各个小题之间的关系是“并列”的还是“递进”的,这一点非常重要。一般说来,如果综合题(1)、(2)、(3)小题是并列关系,它们分别以大题的已知为条件进行解题,(1)的结论与(2)的解题无关,同样(2)的结论与(3)的解题无关,整个大题由这三个小题“拼装”而成。如果是“递进”关系,(1)的结论又是解(2)所必要的条件之一,(3)与(2)也是同样的关系。在有些较难的综合题里,这两种关系经常是兼而有之。
说实在,现在流行的“压轴题”,真是难为我们的学生了。从今年各区的统考试卷看,有的压轴题的综合度太大,以至命题者自己在“参考答案”中表达解题过程都要用去一页A4纸还多,为了应付中考压轴题,有的题任意拔高了对数学思想方法的考查要求,如有些综合题第(2)、(3)两小题都要分好几种情况进行“分类讨论”,太过分了。
课程标准规定,在初中阶段只要求学生初步领会基本的数学思想方法。所以它在中考中也只能在考查基础知识、基本技能和基本方法中有所渗透和体现而已。希望命题者手下留情,不要以考查数学思想方法为名出难题,也不要再打“擦边球”,搞“深挖洞”了。笔者希望世博之年的中考数学卷能够将压轴题的难度从0.37、0.39基础上再下降一点,朝着得分率0.5左右靠拢,千万不要再“双压轴”了。
对一些在区统考的“压轴题”面前打了“败仗”的同学,我劝大家一定要振奋起精神,不要因为这次统考的压轴题不会做或得分过低而垂头丧气,在临考前应当把提高信心和勇气放在首位。笔者建议在总复习最后阶段,不要花过多的精力做大量的综合题,只要精选二十道左右(至多不超过三十道),不同类型、不同结构的综合题进行分析和思考就足够了,如果没有思路,时间又不多,那么看一遍别人的解答也好。
教师对不同的学生,不必强求一律,对有的学生可以只要求他做其中的第(1)题或第(2)题。盲目追“新”求“难”,忽视基础,用大量的复习时间去应付只占整卷10%的压轴题,其结果必然是得不偿失。事实证明:有相当一部分学生在压轴题的失分,并不是没有解题思路,而是错在非常基本的概念和简单的计算上,或是输在“审题”上。应当把功夫花在夯实基础、总结归纳、打通思路、总结规律、提高分析能力上。
笔者建议,同学们可以试着把一些中考压轴题分解为若干个“合题”,进行剪裁和组合,或把一些较难的“填空题”,升格为“简答题”,把一些“熟题”变式为“陌生题”让学生进行练习。这样做,花的时间不多,却能取得比较理想的效果,并且还能使学生的思路“活”起来,逐步达到遇到问题会分析,碰到沟坎,会灵活运用已经学过的知识去解决这样的较高水平。
总之,笔者以为在总复习阶段,对大部分学生而言,要有所为又要有所不为,有时放弃一些难题和大题,多做一些中档的变式题和小题,反而能使他们得益。当然,我们强调变式,不是乱变花样。其目的是促进对标准形式和基本图形的进一步认识和掌握。
本回答被网友采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
一:构造定理所需的图形或基本图形
在解决问题的过程中,有时添加辅助线是必不可少的。对于北京中考来说,只有一道很简单的证明题是可以不用添加辅助线的,其余的全都涉及到辅助线的添加问题。中考对学生添线的要求还是挺高的,但添辅助线几乎都遵循这样一个原则:构造定理所需的图形或构造一些常见的基本图形。
二:做不出、找相似,有相似、用相似
压轴题牵涉到的知识点较多,知识转化的难度较高。学生往往不知道该怎样入手,这时往往应根据题意去寻找相似三角形。
三:紧扣不变量,并善于使用前题所采用的方法或结论
在图形运动变化时,图形的位置、大小、方向可能都有所改变,但在此过程中,往往有某两条线段,或某两个角或某两个三角形所对应的位置或数量关系不发生改变。
四:在题目中寻找多解的信息
图形在运动变化,可能满足条件的情形不止一种,也就是通常所说的两解或多解,如何避免漏解也是一个令考生头痛的问题,其实多解的信息在题目中就可以找到,这就需要我们深度的挖掘题干,实际上就是反复认真的审题。
总之,问题的切入点很多,考试时也不是一定要找到那么多,往往只需找到一两个就行了,关键是找到以后一定要敢于去做。有些同学往往想想觉得不行就放弃了,其实绝大多数的题目只要想到上述切入点,认真做下去,问题基本都可以得到解决。
在解决问题的过程中,有时添加辅助线是必不可少的。对于北京中考来说,只有一道很简单的证明题是可以不用添加辅助线的,其余的全都涉及到辅助线的添加问题。中考对学生添线的要求还是挺高的,但添辅助线几乎都遵循这样一个原则:构造定理所需的图形或构造一些常见的基本图形。
二:做不出、找相似,有相似、用相似
压轴题牵涉到的知识点较多,知识转化的难度较高。学生往往不知道该怎样入手,这时往往应根据题意去寻找相似三角形。
三:紧扣不变量,并善于使用前题所采用的方法或结论
在图形运动变化时,图形的位置、大小、方向可能都有所改变,但在此过程中,往往有某两条线段,或某两个角或某两个三角形所对应的位置或数量关系不发生改变。
四:在题目中寻找多解的信息
图形在运动变化,可能满足条件的情形不止一种,也就是通常所说的两解或多解,如何避免漏解也是一个令考生头痛的问题,其实多解的信息在题目中就可以找到,这就需要我们深度的挖掘题干,实际上就是反复认真的审题。
总之,问题的切入点很多,考试时也不是一定要找到那么多,往往只需找到一两个就行了,关键是找到以后一定要敢于去做。有些同学往往想想觉得不行就放弃了,其实绝大多数的题目只要想到上述切入点,认真做下去,问题基本都可以得到解决。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
一个一个小知识点要会,另外还要掌握一些最基本的高中的定理,如平面几何中的正弦、余弦定理和圆幂定理等。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
主要是平常的练习。如果是求动点问题,就先找明几何关系,根据几何关系列出一般方程,这里注意的是定义域(自变量的范围)
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
多见题型,多练习,自然就灵活了
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询