已知椭圆C:x^2/3+y^2=1. 其准圆:x^2+y^2=4. 点P是椭圆C的准圆上的一个动点 10

过点P作直线l1,l2,使得l1,l2与椭圆C都只有一个焦点,求证l1垂直l2.... 过点P作直线l1,l2,使得l1,l2与椭圆C都只有一个焦点,求证l1垂直l2. 展开
feidao2010
2013-12-13 · TA获得超过13.7万个赞
知道顶级答主
回答量:2.5万
采纳率:92%
帮助的人:1.6亿
展开全部
解答:
椭圆方程x²+3y²=3

设P(x0,y0)在椭圆的准圆上
则x0²+y0²=4
设过P的直线是y-y0=k(x-x0)
代入椭圆方程
x²+3[kx-(kx0-y0)]²=3
∴ (1+3k²)x²-6(kx0-y0)kx+3(kx0-y0)²-3=0
判别式=36(kx0-y0)²*k²-4(1+3k²)*[3(kx0-y0)²-3]=0
∴ 3(kx0-y0)²k²-(1+3k²)*[(kx0-y0)²-1]=0
∴ -(kx0-y0)²+1+3k²=0
即 (3-x0²)k²+2kx0y0+1-y0²=0
则 利用韦达定理,k1*k2=(1-y0²)/(3-x0²)=(1-4+x0²)/(3-x0²)=-1
∴ 直线L1,L2垂直。
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式