分别以Rt△ABC的直角边AC及斜边AB向外作等边△ACD,等边△ABE,已知∠BAC=30度,EF⊥AB垂足为E,连接DF
展开全部
证明:在Rt△ABC,∠BAC=30°,
∴∠ABC=60°,
等边△ABE中,∠ABE=60°,且AB=BE,
∵EF⊥AB,
∴∠EFB=90°,
∴Rt△ABC≌Rt△EBF,
∴AC=EF,
又在等边△ACD中,∠DAC=60°,AD=AC,
又∵∠BAC=30°,
∴∠DAF=90°,
∴AD∥EF,
又∵AC=EF,∴AD=EF,
∴四边形ADFE是平行四边形.
∴∠ABC=60°,
等边△ABE中,∠ABE=60°,且AB=BE,
∵EF⊥AB,
∴∠EFB=90°,
∴Rt△ABC≌Rt△EBF,
∴AC=EF,
又在等边△ACD中,∠DAC=60°,AD=AC,
又∵∠BAC=30°,
∴∠DAF=90°,
∴AD∥EF,
又∵AC=EF,∴AD=EF,
∴四边形ADFE是平行四边形.
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询