高中数学不等式证明题:求证当a>0,b>0时1\ab+1/a(a-b)>=4/a^2

worldbl
2011-12-25 · TA获得超过3.3万个赞
知道大有可为答主
回答量:6885
采纳率:100%
帮助的人:3393万
展开全部
1/(ab)+1/a(a-b)=(1/a)[1/b+1/(a-b)]=(1/a)[(a-b+b)/b(a-b)]=1/b(a-b)
因为b(a-b)≤[(b+a-b)/2]²=a²/4
所以1/b(a-b)≥4/a²
即1/(ab)+1/a(a-b)≥4/a²
注:考虑一下,条件应为a>b>0
慕容胜利
2011-12-25 · 超过19用户采纳过TA的回答
知道答主
回答量:62
采纳率:0%
帮助的人:44.2万
展开全部
1/ab+1/a(a-b)>=2sqrt(1/(a^2*b(a-b)))>=4/a^2
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式