设函数f(x)在闭区间(1,1)上连续,在开区间(0,1)内可导,且f(x)=0.证明:存在一点c∈(0,1)

设函数f(x)在闭区间(1,1)上连续,在开区间(0,1)内可导,且f(x)=0.证明:存在一点c∈(0,1),使得cf'(c)+f(c)=f'(c)... 设函数f(x)在闭区间(1,1)上连续,在开区间(0,1)内可导,且f(x)=0.证明:存在一点c∈(0,1),使得cf'(c)+f(c)=f'(c) 展开
xiayetianyi
2011-12-25 · TA获得超过1.7万个赞
知道大有可为答主
回答量:4253
采纳率:33%
帮助的人:3358万
展开全部
设F(x)=xf(x)-f(x) 函数f(x)在闭区间(1,1)上连续,在开区间(0,1)内可导
F(x)亦如此
F(0)=0 F(1)=0 存在一点c∈(0,1),使得F‘(c)=0 cf'(c)+f(c)=f'(c)
tangmei1001
2011-12-25 · TA获得超过9791个赞
知道大有可为答主
回答量:4347
采纳率:80%
帮助的人:3904万
展开全部
f(x)=0?
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 1条折叠回答
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式