求解两道高数题,急
1、设y=x^5/x^2+7x+12,求y的n阶导2、设f(x)连续,且满足f(xy)=f(x)+f(y),证明:∫(0到1)f(1+x)/(1+x^2)dx=π/8*f...
1、设y=x^5/x^2+7x+12,求y的n阶导
2、设f(x)连续,且满足f(xy)=f(x)+f(y),证明:
∫(0到1)f(1+x)/(1+x^2) dx=π/8*f(π) 展开
2、设f(x)连续,且满足f(xy)=f(x)+f(y),证明:
∫(0到1)f(1+x)/(1+x^2) dx=π/8*f(π) 展开
2个回答
展开全部
y=x^5/(x^2+7x+12)=x^5/(x+3)(x+5)
=(x^5+3x^4-3x^4-9x^3+9x^3+27x^2-27x^2-81x+81x+243-243)/(x+3)(x+5)
=(x^4-3x^3+9x^2-27x+81)/(x+5) -243/(x+3)(x+5)
=(-243/2)(1/(x+3)-1/(x+5)) +(x^4+5x^3-8x^3-40x^2+49x^2+245x-272x-1360+1441)/(x+5)
=(-243/2)(1/(x+3)-1/(x+5))+x^3-8x^2+49x-272+ (1441)/(x+5)
=(-243/2)(1/(x+3))+(1441+243/2)(1/(x+5))+x^3-8x^2+49x-272
y'=(243/2)(1/(x+3)^2)-(1441+243/2)(1/(x+5)^2)+3x^2-16x+49
y''=(-243)(1/(x+3)^3)+3125*(1/(x+5)^3) +6x-16
y'''=(729)(1/(x+3)^4) -9375/(x+5)^4+6
n>4
y^(n)=(-243/2)n!*(-1)^n *(1/(x+3)^(n+1)) +(3125/2)n!*(-1)^n *(1/(x+5)^(n+1)
2
f(xy)=f(x)+f(y)
∫[0,1] f(1+x)dx/(1+x^2)=∫[0,1]f(1+x)darctanx
=arctanx f(1+x)|[0,1] -∫[0,1]arctanxdf(1+x)
=(x^5+3x^4-3x^4-9x^3+9x^3+27x^2-27x^2-81x+81x+243-243)/(x+3)(x+5)
=(x^4-3x^3+9x^2-27x+81)/(x+5) -243/(x+3)(x+5)
=(-243/2)(1/(x+3)-1/(x+5)) +(x^4+5x^3-8x^3-40x^2+49x^2+245x-272x-1360+1441)/(x+5)
=(-243/2)(1/(x+3)-1/(x+5))+x^3-8x^2+49x-272+ (1441)/(x+5)
=(-243/2)(1/(x+3))+(1441+243/2)(1/(x+5))+x^3-8x^2+49x-272
y'=(243/2)(1/(x+3)^2)-(1441+243/2)(1/(x+5)^2)+3x^2-16x+49
y''=(-243)(1/(x+3)^3)+3125*(1/(x+5)^3) +6x-16
y'''=(729)(1/(x+3)^4) -9375/(x+5)^4+6
n>4
y^(n)=(-243/2)n!*(-1)^n *(1/(x+3)^(n+1)) +(3125/2)n!*(-1)^n *(1/(x+5)^(n+1)
2
f(xy)=f(x)+f(y)
∫[0,1] f(1+x)dx/(1+x^2)=∫[0,1]f(1+x)darctanx
=arctanx f(1+x)|[0,1] -∫[0,1]arctanxdf(1+x)
本回答被提问者采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
好的!
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询