【高分求解,急!】几道高一数学题
1.已知角a的终边上有一点P(-根号3,m+1),m∈R,若cosa<0且tana>0,求实数m取值范围。2.已知tanx=2,(1)求(cosx+sinx)/(cosx...
1.已知角a的终边上有一点P(-根号3,m+1),m∈R,若cos a<0且tan a>0,求实数m取值范围。
2.已知tan x=2,
(1)求(cosx+sinx)/(cosx-sinx)+sinx的平方 的值
(2)求证:(sinx-cosx)/(sinx+cosx)=tan(x-π/4)
3.已知函数f(x)=2sin(πx/4+π/4),
当x∈[-6,2/3]时,求函数y=f(x)+f(x+2)的最大值与最小值及相应的x的值
4.已知锐角三角形ABC中,sin(A+B)=3/5,sin(A-B)=1/5,
(1)求证tanA=2tanB
(2)设AB=3,求AB边上的高
急急急,求解答!要过程!全解出的话再追加50分!
fk啊!没人会吗?急啊!! 展开
2.已知tan x=2,
(1)求(cosx+sinx)/(cosx-sinx)+sinx的平方 的值
(2)求证:(sinx-cosx)/(sinx+cosx)=tan(x-π/4)
3.已知函数f(x)=2sin(πx/4+π/4),
当x∈[-6,2/3]时,求函数y=f(x)+f(x+2)的最大值与最小值及相应的x的值
4.已知锐角三角形ABC中,sin(A+B)=3/5,sin(A-B)=1/5,
(1)求证tanA=2tanB
(2)设AB=3,求AB边上的高
急急急,求解答!要过程!全解出的话再追加50分!
fk啊!没人会吗?急啊!! 展开
2个回答
展开全部
1、解:
cos a = -√3/√[3+(m+1)]² <0,恒成立;
tan a = (m+1)/(-√3) >0 ==> m+1<0 ==>m<-1
因此 m取值范围是 m < -1;
2、解:
(1) (cosx+sinx)/(cosx-sinx)+sin²x
= (1+tanx)/(1-tanx) + 1-cos²x /**分子分母同除以cosx **/
= -3 + 1- 1/(1+tan²x) /** cosx = 1/secx ; sec²x =1+tan²x
=-11/5
(2)
(sinx-cosx)/(sinx+cosx) = (tanx-1)/(tanx +1) /**分子分母同除以cosx **/
tan(x-π/4) = [tanx -tan(π/4)]/[tanx -tan(π/4)] /**两角和的正切公式i **/
= (tanx-1)/(tanx +1)
左边 = 右边,因此原等式成立
3、解:
由 f(x)=2sin(πx/4+π/4) 得:
y = f(x)+f(x+2)
= 2sin(πx/4+π/4) + 2sin[π(x+2)/4+π/4]
= 2sin(πx/4+π/4) + 2cos(πx/4+π/4)
= 2√2 *[ sin(πx/4+π/4)cos(π/4) + cos(πx/4+π/4)sin(π/4)]
= 2√2 sin(πx/4+π/4+π/4) = 2√2 cos (πx/4)
当 -6 ≤x≤ 2/3 时,-3π/2 ≤ πx/4 ≤ π/6
因此: -1 ≤ cos (πx/4) ≤ 1
πx/4 = -π,即 x = -4 时,y最小值 = -2√2
πx/4 = 0,即 x = 0 时,y最大值 = 2√2
4、解:
(1) sin(A+B)=3/5 ==> sinAcosB + cosAsinB = 3/5
sin(A-B)=1/5 ==> sinAcosB - cosAsinB = 1/5
解得:
sinAcosB = 2/5
cosAsinB = 1/5
两式相除
==> (sinAcosB)/(cosAsinB) =2
==> tanA/tanB =2
即:tanA = 2tanB
(2) 设AB边上的高为h,则有:
h*cotA + h*cotB = AB = 3
==> h*(tanA+tanB)/(tanA*tanB) = 3
==> h * (tanA + 1/2*tanA)/(tanA*1/2*tanA) =3
==> h = tanA
由cosAsinB = 1/5 两边平方得:
cos²A(1-cos²B) =1/25;
将cos²A = 1/(1+tan²A);cos²B = 1/(1+tan²B) = 1/(1+1/4*tan²A) 代入并整理得:
(tan²A -10)² = 96
解得:tan²A = 10±4√6
==> h = tanA = 2±√6
因此AB边上的高为2±√6
cos a = -√3/√[3+(m+1)]² <0,恒成立;
tan a = (m+1)/(-√3) >0 ==> m+1<0 ==>m<-1
因此 m取值范围是 m < -1;
2、解:
(1) (cosx+sinx)/(cosx-sinx)+sin²x
= (1+tanx)/(1-tanx) + 1-cos²x /**分子分母同除以cosx **/
= -3 + 1- 1/(1+tan²x) /** cosx = 1/secx ; sec²x =1+tan²x
=-11/5
(2)
(sinx-cosx)/(sinx+cosx) = (tanx-1)/(tanx +1) /**分子分母同除以cosx **/
tan(x-π/4) = [tanx -tan(π/4)]/[tanx -tan(π/4)] /**两角和的正切公式i **/
= (tanx-1)/(tanx +1)
左边 = 右边,因此原等式成立
3、解:
由 f(x)=2sin(πx/4+π/4) 得:
y = f(x)+f(x+2)
= 2sin(πx/4+π/4) + 2sin[π(x+2)/4+π/4]
= 2sin(πx/4+π/4) + 2cos(πx/4+π/4)
= 2√2 *[ sin(πx/4+π/4)cos(π/4) + cos(πx/4+π/4)sin(π/4)]
= 2√2 sin(πx/4+π/4+π/4) = 2√2 cos (πx/4)
当 -6 ≤x≤ 2/3 时,-3π/2 ≤ πx/4 ≤ π/6
因此: -1 ≤ cos (πx/4) ≤ 1
πx/4 = -π,即 x = -4 时,y最小值 = -2√2
πx/4 = 0,即 x = 0 时,y最大值 = 2√2
4、解:
(1) sin(A+B)=3/5 ==> sinAcosB + cosAsinB = 3/5
sin(A-B)=1/5 ==> sinAcosB - cosAsinB = 1/5
解得:
sinAcosB = 2/5
cosAsinB = 1/5
两式相除
==> (sinAcosB)/(cosAsinB) =2
==> tanA/tanB =2
即:tanA = 2tanB
(2) 设AB边上的高为h,则有:
h*cotA + h*cotB = AB = 3
==> h*(tanA+tanB)/(tanA*tanB) = 3
==> h * (tanA + 1/2*tanA)/(tanA*1/2*tanA) =3
==> h = tanA
由cosAsinB = 1/5 两边平方得:
cos²A(1-cos²B) =1/25;
将cos²A = 1/(1+tan²A);cos²B = 1/(1+tan²B) = 1/(1+1/4*tan²A) 代入并整理得:
(tan²A -10)² = 96
解得:tan²A = 10±4√6
==> h = tanA = 2±√6
因此AB边上的高为2±√6
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询