已知函数f(x)=3sin^2x+2sinxcosx+cos^2x,x属于R。(1)求函数的最大值及此时x的集合(2)求单调增区间
2个回答
展开全部
f(x)=3sin^2x+2sinxcosx+cos^2x
=2sin^2x+2sinxcosx+1
=2sin^2x-1+2sinxcosx+2
=-cos(2x)+sin(2x)+2
=sin(2x-π/4)+2
所以最大值3,最小值-1
最大值是sin(2x-π/4)=1
2x-π/4=2kπ+π/2
2x=2kπ+3π/4
x=kπ+3π/8
单调区间
y=sin(2x-π/4)的单增区间为
2kπ-π/2≤2x-π/4≤2kπ+π/2
2kπ-π/4≤2x≤2kπ+3π/4
kπ-π/8≤x≤kπ+3π/8
所以单减区间为
kπ+3π/8≤x≤kπ+7π/8
=2sin^2x+2sinxcosx+1
=2sin^2x-1+2sinxcosx+2
=-cos(2x)+sin(2x)+2
=sin(2x-π/4)+2
所以最大值3,最小值-1
最大值是sin(2x-π/4)=1
2x-π/4=2kπ+π/2
2x=2kπ+3π/4
x=kπ+3π/8
单调区间
y=sin(2x-π/4)的单增区间为
2kπ-π/2≤2x-π/4≤2kπ+π/2
2kπ-π/4≤2x≤2kπ+3π/4
kπ-π/8≤x≤kπ+3π/8
所以单减区间为
kπ+3π/8≤x≤kπ+7π/8
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询