已知{an}为等比数列,a1=1,a5=256,S n为等差数列{bn}的前n项和,b1=2,5S5=2S8
展开全部
解:1) {an}为等比数列,a1=1,a5=256,令an=a1q^(n-1)=q^(n-1),
=> q=(a5/a1)^(1/4)=±4
q=4时,an=4^(n-1);
q=-4时,an=(-4)^(n-1).
2) 令bn=b1+(n-1)d=2+(n-1)d,
=> Sn=b1n+n(n-1)d/2=2n+n(n-1)d/2,
=> S5=10+10d, S8=16+28d,
5S5=2S8,
=> d=3,
=> bn=2+3(n-1)=3n-1
=> q=(a5/a1)^(1/4)=±4
q=4时,an=4^(n-1);
q=-4时,an=(-4)^(n-1).
2) 令bn=b1+(n-1)d=2+(n-1)d,
=> Sn=b1n+n(n-1)d/2=2n+n(n-1)d/2,
=> S5=10+10d, S8=16+28d,
5S5=2S8,
=> d=3,
=> bn=2+3(n-1)=3n-1
展开全部
:(1)设{an}的公比为q,由a5=a1q4得q=4,所以an=4n-1.
设{bn}的公差为d,由5S5=2S8得5(5b1+10d)=2(8b1+28d), d=32a1=32×2=3,
所以bn=b1+(n-1)d=3n-1.
(2)Tn=1•2+4•5+42•8++4n-1(3n-1),①
4Tn=4•2+42•5+43•8++4n(3n-1),②
②-①得:3Tn=-2-3(4+42++4n)+4n(3n-1)
=-2+4(1-4n-1)+4n(3n-1)
=2+(3n-2)•4n
∴Tn=(n- 23)4n+ 23
设{bn}的公差为d,由5S5=2S8得5(5b1+10d)=2(8b1+28d), d=32a1=32×2=3,
所以bn=b1+(n-1)d=3n-1.
(2)Tn=1•2+4•5+42•8++4n-1(3n-1),①
4Tn=4•2+42•5+43•8++4n(3n-1),②
②-①得:3Tn=-2-3(4+42++4n)+4n(3n-1)
=-2+4(1-4n-1)+4n(3n-1)
=2+(3n-2)•4n
∴Tn=(n- 23)4n+ 23
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询