2个回答
展开全部
14. y=ln[(2-x)/(2+x)]
y'=(2+x)/(2-x) * [-(2+x)-(2-x)]/(2+x)^2 = 4/(x^2 - 4)
y''=4*[-2x / (x^2 - 4)^2]=-8x/(x^2 - 4)^2
15. 令x^(1/6)=t, x=t^6, dx=6 * t^5 dt
原式=6∫t^5 / (t^2 + t^3)dt
=6∫t^3 / (t+1)dt
=6∫(t^3 + 1 - 1) / (t+1)dt
=6[∫(t+1)(t^2+t+1)/(t+1)dt - ∫1/ (t+1)dt
=6[∫(t^2+t+1)dt - ∫1/ (t+1)d(t+1)]
=6[t^3 /3 + t^2 / 2 + t - ln(t+1)]
还原x得6{x^(1/2) /3 + x^(1/3) / 2 + x^(1/6) - ln[x^(1/6)+1)]} + c
y'=(2+x)/(2-x) * [-(2+x)-(2-x)]/(2+x)^2 = 4/(x^2 - 4)
y''=4*[-2x / (x^2 - 4)^2]=-8x/(x^2 - 4)^2
15. 令x^(1/6)=t, x=t^6, dx=6 * t^5 dt
原式=6∫t^5 / (t^2 + t^3)dt
=6∫t^3 / (t+1)dt
=6∫(t^3 + 1 - 1) / (t+1)dt
=6[∫(t+1)(t^2+t+1)/(t+1)dt - ∫1/ (t+1)dt
=6[∫(t^2+t+1)dt - ∫1/ (t+1)d(t+1)]
=6[t^3 /3 + t^2 / 2 + t - ln(t+1)]
还原x得6{x^(1/2) /3 + x^(1/3) / 2 + x^(1/6) - ln[x^(1/6)+1)]} + c
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询