如图所示,矩形ABCD中,点E在CB的延长线上,使CE=AC,连结AE,点F是AE的中点,连结BF、DF,试说明BF⊥DF
4个回答
展开全部
证明:连接CF
∵CE=AC,F是AE的中点
∴CF⊥AE (三线合一)
∴∠AFC=90
∴∠AFD+∠CFD=90
∵矩形ABCD
∴AD=BC,∠ABE=∠BAD=∠ABC=90
∴AF=BF=CF (直角三角形中线特性)
∴∠ABF=∠BAF
∵∠FAD=∠BAD+∠BAF,∠FBC=∠ABC+∠ABF
∴∠FAD=∠FBC
∴△AFD≌△BFC (SAS)
∴∠BFC=∠AFD
∴∠BFD=∠BFC+∠CFD=∠AFD+∠CFD=90
∴BF⊥DF
∵CE=AC,F是AE的中点
∴CF⊥AE (三线合一)
∴∠AFC=90
∴∠AFD+∠CFD=90
∵矩形ABCD
∴AD=BC,∠ABE=∠BAD=∠ABC=90
∴AF=BF=CF (直角三角形中线特性)
∴∠ABF=∠BAF
∵∠FAD=∠BAD+∠BAF,∠FBC=∠ABC+∠ABF
∴∠FAD=∠FBC
∴△AFD≌△BFC (SAS)
∴∠BFC=∠AFD
∴∠BFD=∠BFC+∠CFD=∠AFD+∠CFD=90
∴BF⊥DF
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
延长BF交DA延长线于H,
由AH//BF,AF=EF易证全等进而得BF=HF,AH=BE,继续CE=AC=BD=DH,再由三线合一得DF垂直于BH,结论可得。
由AH//BF,AF=EF易证全等进而得BF=HF,AH=BE,继续CE=AC=BD=DH,再由三线合一得DF垂直于BH,结论可得。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询