怎么证明R(AB)>=R(A)+R(B)-N
AB与n阶单位矩阵En构造分块矩阵:
|AB O|
A分乘下面两块矩阵加到上面两块矩阵,有:
|AB A|
|0 En|
右边两块矩阵分乘-B加到左边两块矩阵,有:
|0 A |
|-B En|
所以,r(AB)+n=r(第一个矩阵)=r(最后一个矩阵)>=r(A)+r(B)
即r(A)+r(B)-n<=r(AB)。
解线性方程组
记线性方程组的系数矩阵为A,增广矩阵为B= (A,b),则:
()R(A)= R(B)= n,方程组有惟一解;
(i)R(A)= R(B) < n,方程组有无穷解;
(i)R(A) < R(B),方程组无解。
|AB O|
|O En|
A分乘下面两块矩阵加到上面两块矩阵,有
|AB A|
|0 En|
右边两块矩阵分乘-B加到左边两块矩阵,有
|0 A |
|-B En|
所以,r(AB)+n=r(第一个矩阵)=r(最后一个矩阵)>=r(A)+r(B)
即r(A)+r(B)-n<=r(AB)
特别规定零矩阵的秩为零。
A=(aij)m×n的不为零的子式的最大阶数称为矩阵A的秩,记作rA,或rankA或R(A)。
显然rA≤min(m,n) 易得:
若A中至少有一个r阶子式不等于零,且在r<min(m,n)时,A中所有的r+1阶子式全为零,则A的秩为r。
由定义直接可得n阶可逆矩阵的秩为n,通常又将可逆矩阵称为满秩矩阵, det(A)≠0;不满秩矩阵就是奇异矩阵,det(A)=0。
由行列式的性质知,矩阵A的转置AT的秩与A的秩是一样的,即rank(A)=rank(AT)。
AB与n阶单位矩阵En构造分块矩阵
|AB O|
|O En|
A分乘下面两块矩阵加到上面两块矩阵,有
|AB A|
|0 En|
右边两块矩阵分乘-B加到左边两块矩阵,有
|0 A |
|-B En|
所以,r(AB)+n=r(第一个矩阵)=r(最后一个矩阵)>=r(A)+r(B)
即r(A)+r(B)-n<=r(AB)
扩展资料
矩阵的秩以r表示,在线性代数中,一个矩阵A的列秩是 A的线性无关的纵列的极大数目。
只有零矩阵有秩 0 A的秩最大为 min(m,n) f是单射,当且仅当 A有秩 n(在这种情况下,我们称 A有“满列秩”)。f是满射,当且仅当 A有秩 m(在这种情况下,我们称 A有“满行秩”)。在方块矩阵A(就是 m= n) 的情况下,则 A是可逆的,当且仅当 A有秩 n(也就是 A有满秩)。如果 B是任何 n× k矩阵,则 AB的秩最大为 A的秩和 B的秩的小者。即:秩(AB)≤min(秩(A)
参考资料百度百科-秩
|AB O|
|O En|
A分乘下面两块矩阵加到上面两块矩阵,有
|AB A|
|0 En|
右边两块矩阵分乘-B加到左边两块矩阵,有
|0 A |
|-B En|
所以,r(AB)+n=r(第一个矩阵)=r(最后一个矩阵)>=r(A)+r(B)
即r(A)+r(B)-n<=r(AB)