已知中心在原点,焦点在坐标轴上的椭圆与直线x+y=1相交于A,B两点,且AB=2√2,连结AB的中点与原点的直线斜
已知中心在原点,焦点在坐标轴上的椭圆与直线x+y=1相交于A,B两点,且AB=2√2,连结AB的中点与原点的直线斜率为√2/2,求椭圆方程。解清楚点~!...
已知中心在原点,焦点在坐标轴上的椭圆与直线x+y=1相交于A,B两点,且AB=2√2,连结AB的中点与原点的直线斜率为√2/2,求椭圆方程。
解清楚点~! 展开
解清楚点~! 展开
1个回答
展开全部
可以先假设焦点在x轴上,设该椭圆方程为x^2/a^2+y^2/b^2=1........①
直线方程 x+y=1......②
联立①② 可得(a^2+b^2)x^2-2(a^2)x+a^2-a^2b^2=0
x1+x2=-(-2a^2)/(a^2+b^2)=2a^2/a^2+b^2 x1*x2=(a^2-a^2b^2)/a^2+b^2
同理可得出y1+y2=2b^2/a^2+b^2 AB中点坐标为(x1+x2/2,y1+y2/2)=(a^2/a^2+b^2,b^2/a^2+b^2)
又因为其与原点的直线斜率为√2/2。可以得出√2b^2=a^2......③
根据弦长公式|AB|=√(1+k^2) |x1-x2|=2√2
|x1-x2|=√(x1+x2)^2-4x1x2
得出a^4(b^2-1)+(a^2-1)b^4=a^2b^2.......④
将③代入④可以解得a和b的值。
同理可以应用在当焦点在y轴的情况下
直线方程 x+y=1......②
联立①② 可得(a^2+b^2)x^2-2(a^2)x+a^2-a^2b^2=0
x1+x2=-(-2a^2)/(a^2+b^2)=2a^2/a^2+b^2 x1*x2=(a^2-a^2b^2)/a^2+b^2
同理可得出y1+y2=2b^2/a^2+b^2 AB中点坐标为(x1+x2/2,y1+y2/2)=(a^2/a^2+b^2,b^2/a^2+b^2)
又因为其与原点的直线斜率为√2/2。可以得出√2b^2=a^2......③
根据弦长公式|AB|=√(1+k^2) |x1-x2|=2√2
|x1-x2|=√(x1+x2)^2-4x1x2
得出a^4(b^2-1)+(a^2-1)b^4=a^2b^2.......④
将③代入④可以解得a和b的值。
同理可以应用在当焦点在y轴的情况下
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询