如图,直线y=-x+3与x轴、y轴分别相交于点B、点C,经过B、C两点的抛物线y=x2+bx+c与x轴的另一交点为A, 10
如图,直线y=-x+3与x轴、y轴分别相交于点B、点C,经过B、C两点的抛物线y=x2+bx+c与x轴的另一交点为A,顶点为P①求该抛物线的解析式和A点的坐标;②连接AC...
如图,直线y=-x+3与x轴、y轴分别相交于点B、点C,经过B、C两点的抛物线y=x2+bx+c与x轴的另一交点为A,顶点为P
①求该抛物线的解析式和A点的坐标;
②连接AC,BP求证:△BCP∽△OCA;
③在x轴上找一点Q,使得以点P、B、Q为顶点的三角形与△ABC相似,请求出点Q的坐标 展开
①求该抛物线的解析式和A点的坐标;
②连接AC,BP求证:△BCP∽△OCA;
③在x轴上找一点Q,使得以点P、B、Q为顶点的三角形与△ABC相似,请求出点Q的坐标 展开
2个回答
展开全部
(1)直线y=-x+3与x轴、y轴分别交于点B、C,
所以:点B(3,0)、C(0,3),
抛物线y=-x²+bx+c经过B(3,0)、C(0,3)两点,
所以:C=3,
0=-9+3b+3,
b=2,
所以该抛物线所对应的函数关系式:y=-x²+2x+3;
(2)存在点P,使PB=PC;
直线BC的解析式为:y=-X+3,线段BC的中点Q(3/2,3/2),
设过点Q且垂直于BC的直线解析式为y=KX+m,则K=1,
m=0,所以y=3/2 X,
求出直线y=3/2 X与y=-x²+2x+3的交点P即可,
所以P1(2,3),P2(-3/2,-9/4).
所以:点B(3,0)、C(0,3),
抛物线y=-x²+bx+c经过B(3,0)、C(0,3)两点,
所以:C=3,
0=-9+3b+3,
b=2,
所以该抛物线所对应的函数关系式:y=-x²+2x+3;
(2)存在点P,使PB=PC;
直线BC的解析式为:y=-X+3,线段BC的中点Q(3/2,3/2),
设过点Q且垂直于BC的直线解析式为y=KX+m,则K=1,
m=0,所以y=3/2 X,
求出直线y=3/2 X与y=-x²+2x+3的交点P即可,
所以P1(2,3),P2(-3/2,-9/4).
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询