求值:cos2π/7cos4π/7cos8π/7
2个回答
展开全部
cos(2π/7)cos(4π/7)cos(8π/7)
=2sin(2π/7)cos(2π/7)cos(4π/7)cos(8π/7)/【2sin(2π/7)】
=sin(4π/7)cos(4π/7)cos(8π/7)/【2sin(2π/7)】
=2sin(4π/7)cos(4π/7)cos(8π/7)/【4sin(2π/7)】
=sin(8π/7)cos(8π/7)/【4sin(2π/7)】
=2sin(8π/7)cos(8π/7)/【8sin(2π/7)】
=sin(16π/7)/【8sin(2π/7)】
=sin(2π/7)/【8sin(2π/7)】
=1/8
=2sin(2π/7)cos(2π/7)cos(4π/7)cos(8π/7)/【2sin(2π/7)】
=sin(4π/7)cos(4π/7)cos(8π/7)/【2sin(2π/7)】
=2sin(4π/7)cos(4π/7)cos(8π/7)/【4sin(2π/7)】
=sin(8π/7)cos(8π/7)/【4sin(2π/7)】
=2sin(8π/7)cos(8π/7)/【8sin(2π/7)】
=sin(16π/7)/【8sin(2π/7)】
=sin(2π/7)/【8sin(2π/7)】
=1/8
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询