拉格朗日法求极值时拉格朗日乘数可不可以为0 谢谢
还有就是用拉格朗日和用求导法再将边界带入求的方法有什么区别什么时候用拉格朗日什么时候用边界带入法...
还有就是用拉格朗日和用求导法 再将边界带入求的方法有什么区别 什么时候用拉格朗日 什么时候用边界带入法
展开
1个回答
展开全部
不可以。因为拉郎乘数法的条件是乘数不等于0。
你说的是求最值(最值是某个区间的最大或最小,注意最大/最小可能有同值的多个,所以也不唯一哈,极值是一个小范围,很小很小,内的最值)。因为最值总是发生在极值点+区间边界点+间断点处,所以可以用拉朗乘数求出极值,用边界和间断点极限求出可疑极值,比较他们的大小,就可以找到区间内的最值了。特别地,若函数在区间内用拉朗求出仅一个极值,切很易判定没有其他可疑极值点,就可以直接判断那个极值是最值;或者可以判断函数在所给区间内单调(比如exp(x^2+y^2)在(x>0,y>0)时单调递增),就不用求极值(因为没有),直接求区间边界(或者间断点,有间断点也可以单调的哦)作为最值。
你说的是求最值(最值是某个区间的最大或最小,注意最大/最小可能有同值的多个,所以也不唯一哈,极值是一个小范围,很小很小,内的最值)。因为最值总是发生在极值点+区间边界点+间断点处,所以可以用拉朗乘数求出极值,用边界和间断点极限求出可疑极值,比较他们的大小,就可以找到区间内的最值了。特别地,若函数在区间内用拉朗求出仅一个极值,切很易判定没有其他可疑极值点,就可以直接判断那个极值是最值;或者可以判断函数在所给区间内单调(比如exp(x^2+y^2)在(x>0,y>0)时单调递增),就不用求极值(因为没有),直接求区间边界(或者间断点,有间断点也可以单调的哦)作为最值。
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询