求由抛物线y=x^2与直线y=x,y=2x所围成的平面图形的面积。求详解思路及答案。
展开全部
解:抛物线y=x^2与直线y=x的交点为(1,1),与直线y=2x的交点为(2,2)。
取距离y轴为x的宽度为dx的一个微元小窄条,其微元面积dS应为分段函数,分为[0,1]和(1,2]两个区间进行表达。
于是围成图形的面积为
S=∫dS=∫ (0,1) (2x-x)dx +∫ (1,2) (2x-x^2)dx
=(1/2*x^2) | (0,1) +(x^2-1/3*x^3) | (1,2)
=1/2+3-7/3=7/6
取距离y轴为x的宽度为dx的一个微元小窄条,其微元面积dS应为分段函数,分为[0,1]和(1,2]两个区间进行表达。
于是围成图形的面积为
S=∫dS=∫ (0,1) (2x-x)dx +∫ (1,2) (2x-x^2)dx
=(1/2*x^2) | (0,1) +(x^2-1/3*x^3) | (1,2)
=1/2+3-7/3=7/6
追问
这是三条线不是两条线围成的图形,为什么只用求两个交点呢?
追答
事实上原点(0,0)也是一个交点嘛。这个点不求自明
2011-12-28
展开全部
政治野
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
2011-12-28
展开全部
此,
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询