4个回答
展开全部
因为,[x+√(x²+1)][-x+√(x²+1)] = 1 ,即有:-x+√(x²+1) = 1/[x+√(x²+1)] ,
所以,lg[-x+√(x²+1)] = -lg[x+√(x²+1)] ;
令 g(x) = f(x)-2 = x³+lg[x+√(x²+1)] ,
则 g(-x) = (-x)³+lg{-x+√[(-x)²+1)]} = -x³+lg[-x+√(x²+1)] = -x³-lg[x+√(x²+1)] = -g(x) ,
已知,f(x) 在 (-∞,0) 上有最小值 -5 ,
可得:g(x) = f(x)-2 在 (-∞,0) 上有最小值 -5-2 = -7 ;
因为,g(x) 是奇函数,
所以,g(x) 在 (0,+∞) 上有最大值 7 ,
可得:f(x) = g(x)+2 在 (0,+∞) 上有最大值 7+2 = 9
所以,lg[-x+√(x²+1)] = -lg[x+√(x²+1)] ;
令 g(x) = f(x)-2 = x³+lg[x+√(x²+1)] ,
则 g(-x) = (-x)³+lg{-x+√[(-x)²+1)]} = -x³+lg[-x+√(x²+1)] = -x³-lg[x+√(x²+1)] = -g(x) ,
已知,f(x) 在 (-∞,0) 上有最小值 -5 ,
可得:g(x) = f(x)-2 在 (-∞,0) 上有最小值 -5-2 = -7 ;
因为,g(x) 是奇函数,
所以,g(x) 在 (0,+∞) 上有最大值 7 ,
可得:f(x) = g(x)+2 在 (0,+∞) 上有最大值 7+2 = 9
本回答被网友采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
因为是根号X,所以X肯定大于0,推荐答案驴唇不对马嘴,没有参考意义。此题只要画出两个函数的图像,观察交点,发现有两个,也就是所要求的零点的个数。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询