二元函数如何求导 谢谢

教育小百科达人
2021-07-29 · TA获得超过156万个赞
知道大有可为答主
回答量:8828
采纳率:99%
帮助的人:478万
展开全部

具体回答如下:

设:u(x,y) = ax^m + bxy + cy^n

∂u/∂x = amx^(m-1) + by 

∂^2u/∂x^2 = am(m-1)x^(m-2)

∂^2u/∂x∂y = b

∂u/∂y = bx + cny^(n-1)

∂^2u/∂y^2 = cn(n-1)y^(n-2)

若求u(x,y)的微分:

du = ∂u/∂x dx + ∂u/∂y dy 

= [amx^(m-1) + by]dx + [bx + cny^(n-1)]dy

可导函数的意义:

如果函数的导函数在某一区间内恒大于零(或恒小于零),那么函数在这一区间内单调递增(或单调递减),这种区间也称为函数的单调区间。导函数等于零的点称为函数的驻点,在这类点上函数可能会取得极大值或极小值(即极值可疑点)。

进一步判断则需要知道导函数在附近的符号。对于满足的一点,如果存在使得在之前区间上都大于等于零,而在之后区间上都小于等于零,那么是一个极大值点,反之则为极小值点。

yxue
推荐于2016-12-02 · TA获得超过2.9万个赞
知道大有可为答主
回答量:1.2万
采纳率:94%
帮助的人:3117万
展开全部
以一例说明
设:u(x,y) = ax^m + bxy + cy^n
∂u/∂x = amx^(m-1) + by :对x求偏导时把y看成是常数,对y时把x看成常数;
∂^2u/∂x^2 = am(m-1)x^(m-2)
∂^2u/∂x∂y = b
∂u/∂y = bx + cny^(n-1)
∂^2u/∂y^2 = cn(n-1)y^(n-2)
若求u(x,y)的微分:
du = ∂u/∂x dx + ∂u/∂y dy
= [amx^(m-1) + by]dx + [bx + cny^(n-1)]dy
其它高阶偏导类似方法进行。
本回答被提问者采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
低调侃大山
2011-12-29 · 家事,国事,天下事,关注所有事。
低调侃大山
采纳数:67731 获赞数:374606

向TA提问 私信TA
展开全部
像一元函数一样的,不过
对变量x求导时,其他变量如y等要作为常数!
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
数学好玩啊123
2011-12-29 · TA获得超过5832个赞
知道大有可为答主
回答量:2585
采纳率:72%
帮助的人:834万
展开全部
z=f(x,y)只能求偏导数dz/dx和dz/dy,若可微则能求全微分dz=(dz/dx)dx+(dz/dy)dy
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 更多回答(2)
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式