19题求解!
1个回答
展开全部
(1)
f(0) = c = -1
f(-1/2 + x) = f(-1/2 - x)一直成立,则x = -1/2为对称轴
f(x) = a(x + 1/2)² + d
其常数项a/4 + d = c = -1
d = -1 - a/4
f(x) = a(x + 1/2)² - 1 - a/4
f(x) ≥ x - 1
a(x + 1/2)² - 1 - a/4 ≥ x - 1
ax² + (a - 1)x ≥ 0恒成立
其判别式= (a - 1)² ≤ 0
a = 1
f(x) = x² + x - 1
(2)
f(a) = a² + a - 1
g(x)为底小于1(且大于0)的对数函数,只要真数(a² + a - 1)^x为增函数,即可.
这需要a² + a - 1 > 1
a² + a - 2 = (a + 2)(a - 1) > 0
a < -2或a > 1
f(0) = c = -1
f(-1/2 + x) = f(-1/2 - x)一直成立,则x = -1/2为对称轴
f(x) = a(x + 1/2)² + d
其常数项a/4 + d = c = -1
d = -1 - a/4
f(x) = a(x + 1/2)² - 1 - a/4
f(x) ≥ x - 1
a(x + 1/2)² - 1 - a/4 ≥ x - 1
ax² + (a - 1)x ≥ 0恒成立
其判别式= (a - 1)² ≤ 0
a = 1
f(x) = x² + x - 1
(2)
f(a) = a² + a - 1
g(x)为底小于1(且大于0)的对数函数,只要真数(a² + a - 1)^x为增函数,即可.
这需要a² + a - 1 > 1
a² + a - 2 = (a + 2)(a - 1) > 0
a < -2或a > 1
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询