计算∫L(x^2+3y)dx+(y^2-x)dy 其中L为上半圆周y=√(4x-x^2)从O(0,0)到A(4,0)
1个回答
展开全部
积分曲线为圆心在(2,0),半径为2的上半圆周,补充曲线L‘:y=0上从(4,0)到(0,0)的一段,这样L+L’构成了闭曲线,可以用格林公式计算。设P=x^2+3y,Q=y^2-x,则Q‘x=-1,P'y=3,注意我们现在取的闭曲线L+L'为负方向,故积分I+I'=-∫∫(Q'x-P'y)dxdy=4∫∫dxdy,而∫∫dxdy就等于积分区域的面积=2π,故沿L+L'的积分=8π,。再计算沿L’的积分,此时y=0(因此dy也=0),故积分I'=∫x^2dx(积分限4到0)=-64/3,所以原积分I=8π+64/3。
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询