若x+y=1,x2+y2=2求x7+y7的值
2个回答
展开全部
解:2xy=(x+y)^2-(x^2+y^2)=1-2=-1
→xy=-1/2
x^7+y^7
=(x+y)(x^6-x^5y+x^4y^2-x^3y^3+x^2y^4-xy^5+y^6)
=[(x^6+y^6)-xy(x^4+y^4+x^2y^2)+(xy)^2(x^2+y^2)]
={[(x^2+y^2)^3-3(xy)^2(x^2+y^2)]+
(1/2)[(x^2+y^2)^2-x^2y^2]+(1/2)^2*2}
={2^3-3*(1/2)^2*2+(1/2)[2^2-(1/2)^2]+(1/2)^2*2}
=71/8
→xy=-1/2
x^7+y^7
=(x+y)(x^6-x^5y+x^4y^2-x^3y^3+x^2y^4-xy^5+y^6)
=[(x^6+y^6)-xy(x^4+y^4+x^2y^2)+(xy)^2(x^2+y^2)]
={[(x^2+y^2)^3-3(xy)^2(x^2+y^2)]+
(1/2)[(x^2+y^2)^2-x^2y^2]+(1/2)^2*2}
={2^3-3*(1/2)^2*2+(1/2)[2^2-(1/2)^2]+(1/2)^2*2}
=71/8
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询