在平面直角坐标系中,矩形OACB的顶点O在坐标原点,顶点A、B分别在x轴、y轴的正半轴上,OA=3,OB=4,D为边 5
OB的中点.(1)若E为边OA上的一个动点,当△CDE的周长最小时,求点E的坐标;(2)若E、F为边OA上两个动点,且EF=2,当四边形CDEF的周长最小时,求点E、F的...
OB的中点.
(1)若E为边OA上的一个动点,当△CDE的周长最小时,求点E的坐标;
(2)若E、F为边OA上两个动点,且EF=2,当四边形CDEF的周长最小时,求点E、F的坐标。 展开
(1)若E为边OA上的一个动点,当△CDE的周长最小时,求点E的坐标;
(2)若E、F为边OA上两个动点,且EF=2,当四边形CDEF的周长最小时,求点E、F的坐标。 展开
展开全部
⑴如图,作点D关于x轴的对称点D',连接CD'与x轴交于点E,连接DE.
若在边OA上任取点E'与点E不重合、,连接CE'、DE'、D'E'
由DE'+CE'=D'E'+CE'>CD'=D'E+CE=DE+CE,
可知△CDE的周长最小.
∵在矩形OACB中,OA=3,OB=4,D为OB的中点,
∴BC=3,D'O=DO=2,D'B=6,
∵OE∥BC,
∴Rt△D'OE∽Rt△D'BC,
如图,作点D关于x轴的对称点D',在CB边上截取CG=2,连接D'G与x轴交于点E,在EA上截取EF=2,
∵GC∥EF,GC=EF,
∴四边形GEFC为平行四边形,有GE=CF,
又DC、EF的长为定值,
∴此时得到的点E、F使四边形CDEF的周长最小.
∵OE∥BC,
∴Rt△D'OE∽Rt△D'BG,
展开全部
解:(1)作点D关于x轴的对称点D′,连接CD′与x轴交于点E.
∵OB=4,OA=3,D是OB的中点,
∴OD=2,则D的坐标是(0,2),C的坐标是(3,4).
∴D′的坐标是(0,-2).
设直线CD′的解析式是:y=kx+b.
则
3k+b=4b=-2
.
解得:
k=2b=-2
则直线的解析式是:y=2x-2.
在解析式中,令y=0,得到2x-2=0,
解得x=1.
则E的坐标为(1,0);
(2)作出D的对称点D′,把D′向右平移两个单位长度到M,则连接CM,与x轴的交点就是F,F点向左平移2个单位长度就是E.
∵D′的坐标是(0,-2),
∴M的坐标是(2,-2).
设直线CM的解析式是:y=kx+b.
则
3k+b=4,2k+b=-2
解得:
k=6b=-14
则直线的解析式是:y=6x-14.
在y=6x-14中,令y=0,
解得x=7/3
∴点F的坐标为(7/3,0)
则点E的坐标为(1/3,o)
.
∵OB=4,OA=3,D是OB的中点,
∴OD=2,则D的坐标是(0,2),C的坐标是(3,4).
∴D′的坐标是(0,-2).
设直线CD′的解析式是:y=kx+b.
则
3k+b=4b=-2
.
解得:
k=2b=-2
则直线的解析式是:y=2x-2.
在解析式中,令y=0,得到2x-2=0,
解得x=1.
则E的坐标为(1,0);
(2)作出D的对称点D′,把D′向右平移两个单位长度到M,则连接CM,与x轴的交点就是F,F点向左平移2个单位长度就是E.
∵D′的坐标是(0,-2),
∴M的坐标是(2,-2).
设直线CM的解析式是:y=kx+b.
则
3k+b=4,2k+b=-2
解得:
k=6b=-14
则直线的解析式是:y=6x-14.
在y=6x-14中,令y=0,
解得x=7/3
∴点F的坐标为(7/3,0)
则点E的坐标为(1/3,o)
.
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
在CB上取CM=2,则M(1,4),在y轴的负半轴上取D的对称点N(0,-2),连接MN交X轴于点E,连接DE,CF,此时四边形CDEF的周长最小。(按我的叙述画图)
因为CD,EF是定值,只要DE+CF最小即可。按上述作图,DE+CF=MN(两点间线段最短)
设直线MN的解析式为Y=KX+B,则
B=-2,K+B=4,
K=2,解析式为:Y=2X-2
当Y=0时,2X-2=0,X=1,
所以,点E的坐标为(1,0),点F的坐标为(3,0)
因为CD,EF是定值,只要DE+CF最小即可。按上述作图,DE+CF=MN(两点间线段最短)
设直线MN的解析式为Y=KX+B,则
B=-2,K+B=4,
K=2,解析式为:Y=2X-2
当Y=0时,2X-2=0,X=1,
所以,点E的坐标为(1,0),点F的坐标为(3,0)
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
D为边 好像是D为边OB的中点吧?
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询