(2013•乐山)已知关于x的一元二次方程x2-(2k+1)x+k2+k=0. (1)求证:方程

有两个不相等的实数根;(2)若△ABC的两边AB,AC的长是这个方程的两个实数根.第三边BC的长为5,当△ABC是等腰三角形时,求k的值.... 有两个不相等的实数根;
(2)若△ABC的两边AB,AC的长是这个方程的两个实数根.第三边BC的长为5,当△ABC是等腰三角形时,求k的值.
展开
 我来答
tony罗腾
2013-12-07 · 知道合伙人软件行家
tony罗腾
知道合伙人软件行家
采纳数:1381 获赞数:293887
本一类院校毕业,之前参与过百度专家的活动,有网络在线答题的经验,相信我,没错的!

向TA提问 私信TA
展开全部
分析:(1)证明这个一元二次方程的根的判别式大于0,根据一元二次方程的根的判别式的性质得到这个方程有两个不相等的实数根;(2)求出方程的根,根据等腰三角形的判定分类求解.
(1)证明:∵ 关于x的一元二次方程x2-(2k+1)x+k2+k=0中,a=1,b=-(2k+1),c=k2+k,
∴ Δ=b2-4ac=[-(2k+1)]2-4×1×(k2+k)=1>0.
∴ 方程有两个不相等的实数根.
(2)解:∵ 由x2-(2k+1)x+k2+k=0,得(x-k)[x-(k+1)]=0,
∴ 方程的两个不相等的实数根为x1=k,x2=k+1.
∵ △ABC的两边AB,AC的长是方程的两个实数根,第三边BC的长为5,∴ 有如下两种情况:
情况1:x1=k=5,此时k=5,满足三角形构成条件;
情况2:x2=k+1=5,此时k=4,满足三角形构成条件.
综上所述,k=4或k=5.
点拨:一元二次方程根的情况与判别式Δ的关系:
(1)Δ>0方程有两个不相等的实数根;
(2)Δ=0方程有两个相等的实数根;
(3)Δ<0方程没有实数根.
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式