二次函数怎么解?

把过程告诉我,谢谢!... 把过程告诉我,谢谢! 展开
帐号已注销
2021-06-24 · TA获得超过77.1万个赞
知道小有建树答主
回答量:4168
采纳率:93%
帮助的人:166万
展开全部

求解二次函数,通常是先设二次函数的解析式为y=ax²+bx+c(a≠0),根据已知条件,代入解析式,列出关于a,b,c的方程,求出a,b,c的值,就可以确定二次函数的解析式了。

可设函数为y=ax^2+bx+c(a≠0),把三个点代入式子得出一个三元一次方程组,就能解出a、b、c的值。知道函数图象与x轴的交点坐标及另一点函数上的点可设函数为y=a(x-x)(x-x),把第一个交点的x值入x中,第二个交点的x值代入x中,把另一点的值代入x、y中求出a。

具体可分为下面几种情况:

当h>0时,y=a(x-h)²的图像可由抛物线y=ax²向右平行移动h个单位得到;

当h>0时,y=a(x+h)²的图像可由抛物线y=ax²向左平行移动h个单位得到;

当h>0,k>0时,将抛物线y=ax²向右平行移动h个单位,再向上移动k个单位,就可以得到y=a(x-h)²+k的图像;

当h>0,k>0时,将抛物线y=ax²向左平行移动h个单位,再向下移动k个单位,就可以得到y=a(x+h)²-k的图像;

以上内容参考:百度百科-二次函数

我行我素我成功
推荐于2016-12-02 · TA获得超过2626个赞
知道小有建树答主
回答量:262
采纳率:100%
帮助的人:294万
展开全部
二次函数的解法
  二次函数的通式是 y= ax^2+bx+c如果知道三个点 将三个点的坐标代入也就是说三个方程解三个未知数   如题方程一8=a2+b2+c 化简 8=c 也就是说c就是函数与Y轴的交点。   方程二7=a×36+b×6+c 化简 7=36a+6b+c。   方程三7=a×(-6)2+b×(-6)+c化简 7=36a-6b+c。   解出a,b,c 就可以了 。   上边这种是老老实实的解法 。   对(6,7)(-6,7)这两个坐标 可以求出一个对称轴也就是X=0 。   通过对称轴公式x=-b/2a 也可以算 。   如果知道过x轴的两个坐标(y=0的两个坐标的值叫做这个方程的两个根)也可以用对称轴公式x=-b/2a算 。   或者使用韦达定理一元二次方程ax^2+bx+c=0 (a≠0 且△=b^2-4ac≥0)中 。   设两个根为X1和X2   则X1+X2= -b/a   X1·X2=c/a   已知顶点(1,2)和另一任意点(3,10),设y=a(x-1)2+2,把(3,10)代入上式,解得y=2(x-1)2+2
一般式
  y=ax^2+bx+c(a≠0,a、b、c为常数),顶点坐标为(-b/2a,4ac-b^2/4a)
顶点式
  y=a(x-h)^2+k(a≠0,a、h、k为常数),顶点坐标为(h,k)对称轴为x=h,顶点的位置特征和图像的开口方向与函数y=ax^2的图像相同,有时题目会指出让你用配方法把一般式化成顶点式。
交点式
  y=a(x-x1)(x-x2) (a≠0) [仅限于与x轴即y=0有交点A(x1,0)和 B(x2,0)的抛物线,即b^2-4ac≥0]   由一般式变为交点式的步骤:
二次函数(16张)  ∵X1+x2=-b/a x1·x2=c/a   ∴y=ax^2+bx+c   =a(x^2+b/ax+c/a)   =a[﹙x^2-(x1+x2)x+x1x2]=a(x-x1)(x-x2)   重要概念:a,b,c为常数,a≠0,且a决定函数的开口方向。a>0时,开口方向向上;a<0时,开口方向向下。a的绝对值可以决定开口大小。a的绝对值越大开口就越小,a的绝对值越小开口就越大。

参考资料: http://baike.baidu.com/view/407281.htm

本回答被提问者采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
走丢的小太阳
2011-12-30
知道答主
回答量:66
采纳率:0%
帮助的人:7.8万
展开全部
有题么?
1要三个点坐标 y=ax2+bx+c
2顶点式一个顶点坐标 和其他一点坐标 y=a(x-h)2+k
3双根式 就是两个坐标都在x轴上y=a(x-x1)(x-x2)
(平方不会打 那个2在后面的是平方 能理解吧)
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
绿茵繁花幽
2011-12-30 · TA获得超过598个赞
知道小有建树答主
回答量:433
采纳率:0%
帮助的人:281万
展开全部
各个题目有不同的解法
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 更多回答(2)
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式