设n阶方阵A的两个特征值λ1,λ2所对应的特征向量分别为a1与a2,且λ1=-λ2不等于0,判断a1,a2是否A的特征
向量,是否为A^2特征向量?怎样解答啊?是判断a1+a2和a1-a2是否为A的特征向量,是否为A^2的的特征向量哈,,,...
向量,是否为A^2特征向量?怎样解答啊?
是判断a1+a2 和a1-a2 是否为A的特征向量,是否为A^2的的特征向量哈,,, 展开
是判断a1+a2 和a1-a2 是否为A的特征向量,是否为A^2的的特征向量哈,,, 展开
展开全部
若a1+a2是A的属于特征值λ的特征向量
则 A(a1+a2)=λ(a1+a2)
∴ Aa1+Aa2=λ(a1+a2)
∴ λ1a1+λ2a2=λa1+λa2
∴ (λ1-λ)a1+(λ2-λ)a2=0.
因为A的属于不同特征值的特征向量线性无关
所以 λ1=λ2=λ, 与已知矛盾.
所以 a1+a2 不是A的特征向量.
同理, a1-a2 也不是A的特征向量.
因为 λ1=-λ2
所以 A^2(a1+a2)
= A^2a1 + A^2a2
= λ1^2a1+λ2^2a2
= λ1^2(a1+a2).
所以 a1+a2 是A^2的属于特征值 λ1^2 的特征向量.
同理可得 a1+a2 是A^2的属于特征值 λ1^2 的特征向量.
则 A(a1+a2)=λ(a1+a2)
∴ Aa1+Aa2=λ(a1+a2)
∴ λ1a1+λ2a2=λa1+λa2
∴ (λ1-λ)a1+(λ2-λ)a2=0.
因为A的属于不同特征值的特征向量线性无关
所以 λ1=λ2=λ, 与已知矛盾.
所以 a1+a2 不是A的特征向量.
同理, a1-a2 也不是A的特征向量.
因为 λ1=-λ2
所以 A^2(a1+a2)
= A^2a1 + A^2a2
= λ1^2a1+λ2^2a2
= λ1^2(a1+a2).
所以 a1+a2 是A^2的属于特征值 λ1^2 的特征向量.
同理可得 a1+a2 是A^2的属于特征值 λ1^2 的特征向量.
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询