已知函数g(x)=1/(sinΦ*x)+lnx在[1,+∞)上为增函数,且Φ∈(0,派) f(x)=mx-(m-1)/x-lnx,m∈R

(2)若f(x)-g(x)在[1,+∞)上为单调函数,求M取值范围这个问题中,(f(x)-g(x))'怎么求?m/x的导数不是-1/x么?怎么是m/x^呢?... (2)若 f(x)-g(x)在[1,+∞)上为单调函数,求M取值范围 这个问题中,(f(x)-g(x))'怎么求?m/x的导数不是-1/x 么?怎么是m/x^呢? 展开
worldbl
2011-12-31 · TA获得超过3.3万个赞
知道大有可为答主
回答量:6885
采纳率:100%
帮助的人:3438万
展开全部
解释:由于(1/x)'=-1/x²,所以m/x的导数是-m/x²。这是基本公式。
(1)g'(x)=-1/(sinΦ•x²)+1/x=(1/x)[1-1/(sinΦ•x)]
由于 g(x)在[1,+∞)上为增函数,所以当x≥1时,有g'(x)≥0,
即1-1/(sinΦ•x)≥0
由于Φ∈(0,π),sinΦ>0
故sinΦ≥1/x
从而 sinΦ≥(1/x)max,x∈[1,+∞)
即 sinΦ≥1,所以 sinΦ=1,Φ=π/2
(2)g(x)=1/x+lnx,f(x)-g(x)=mx -m/x+1/x -lnx -1/x -lnx=mx -m/x-2lnx
[f(x)-g(x)]'=m+m/x² -2/x
由于f(x)-g(x)在[1,+∞)上为单调函数,可分两种情况。
①f(x)-g(x)在[1,+∞)上为增函数,则
m+m/x² -2/x≥0
m≥2x/(x²+1)
令 h(x)=2x/(x²+1)
从而m≥[h(x)]max,x∈[1,+∞)
而h(x)在[1,+∞)上为减函数
所以 m≥h(1)=1
②f(x)-g(x)在[1,+∞)上为减函数
m+m/x² -2/x≤0
m≤2x/(x²+1)
而h(x)=2x/(x²+1)在[1,+∞)上为减函数
所以 m≤0
m的取值范围是m≤0或m≥1
worldbl001
2012-01-10 · 超过15用户采纳过TA的回答
知道答主
回答量:36
采纳率:0%
帮助的人:40.4万
展开全部
M≤0或M≥1
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式