数学题,关于函数 100
8个回答
展开全部
1.已知一次函数图象经过(3,5)和(-4,-9)两点,
(1)求此一次函数解析式;(2)若点(a,2)在函数图象上,求a的值.
(此题意在考查待定系数法.)
2.画出函数y=2x+6的图象,利用图象:
(1)求方程2x+6=0的解;
(2)求不等式2x+6>0的解;
(3)若-1≤y≤3,求x的取值范围.
(此题意在考查一次函数与一元一次方程和一元一次不等式(组).)
3.网络时代的到来,很多家庭都接入了网络,电信局规定了拨号入网两种收费方式,用户可以任选其一:
A:计时制:O.05元/分; B:全月制:54元/月(限一部个人住宅电话入网).此外B种上网方式要加收通信费0.02元/分.
(1)某用户某月上网的时间为x小时,两种收费方式的费用分别为y1(元)、y2(元),写出y1、y2与x之间的函数关系式.
(2)在上网时间相同的条件下,请你帮该用户选择哪种方式上网更省钱?
(此题意在考查一次函数与二元一次方程组.)
4.某服装厂现有A种布料70m,B种布料52m,现计划用这两种布料生产M、N两种型号的时装80套.已知做一套M型号的时装需要A种布料0.6m,B种布料O.9m,可获利45元,做一套N型号的时装需要A种布料1.1m,B种布料0.4m,可获利50元.若设生产N型号的时装套数为x,用这批布料生产这两种型号的时装所获的总利润为y元.
(1)求y与x的函数关系式,并求出自变量x的取值范围;
(2)该服装厂在生产这批时装中,当生产N型号的时装多少套时,所获利润最大?最大利润是多少?
(此题意在考查一次函数在解最大(小)值问题中的应用.)
1.y=2x-1;a= 3/2
2.(1)x=-3;(2)x>-3;(3)-7/2 ≤x≤-3/2
3.(1)y1=3x,y2=1.2x+54.(2)当用户某月上网时间超过30小时时,选择B种上网方式更省钱;当上网时 间为30小时时,两种上网方式费用一样;当上网时间少于30小时,选择A种上网方式更省钱.
4.(1)y=5x+3600(40≤x≤44);(2)当生产N型号的时装44套时,所获利润最大,最大利润是3820元.
(1)求此一次函数解析式;(2)若点(a,2)在函数图象上,求a的值.
(此题意在考查待定系数法.)
2.画出函数y=2x+6的图象,利用图象:
(1)求方程2x+6=0的解;
(2)求不等式2x+6>0的解;
(3)若-1≤y≤3,求x的取值范围.
(此题意在考查一次函数与一元一次方程和一元一次不等式(组).)
3.网络时代的到来,很多家庭都接入了网络,电信局规定了拨号入网两种收费方式,用户可以任选其一:
A:计时制:O.05元/分; B:全月制:54元/月(限一部个人住宅电话入网).此外B种上网方式要加收通信费0.02元/分.
(1)某用户某月上网的时间为x小时,两种收费方式的费用分别为y1(元)、y2(元),写出y1、y2与x之间的函数关系式.
(2)在上网时间相同的条件下,请你帮该用户选择哪种方式上网更省钱?
(此题意在考查一次函数与二元一次方程组.)
4.某服装厂现有A种布料70m,B种布料52m,现计划用这两种布料生产M、N两种型号的时装80套.已知做一套M型号的时装需要A种布料0.6m,B种布料O.9m,可获利45元,做一套N型号的时装需要A种布料1.1m,B种布料0.4m,可获利50元.若设生产N型号的时装套数为x,用这批布料生产这两种型号的时装所获的总利润为y元.
(1)求y与x的函数关系式,并求出自变量x的取值范围;
(2)该服装厂在生产这批时装中,当生产N型号的时装多少套时,所获利润最大?最大利润是多少?
(此题意在考查一次函数在解最大(小)值问题中的应用.)
1.y=2x-1;a= 3/2
2.(1)x=-3;(2)x>-3;(3)-7/2 ≤x≤-3/2
3.(1)y1=3x,y2=1.2x+54.(2)当用户某月上网时间超过30小时时,选择B种上网方式更省钱;当上网时 间为30小时时,两种上网方式费用一样;当上网时间少于30小时,选择A种上网方式更省钱.
4.(1)y=5x+3600(40≤x≤44);(2)当生产N型号的时装44套时,所获利润最大,最大利润是3820元.
追问
用笔,要过程
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
1.已知一次函数图象经过(3,5)和(-4,-9)两点,
(1)求此一次函数解析式;(2)若点(a,2)在函数图象上,求a的值.
(此题意在考查待定系数法.)
2.画出函数y=2x+6的图象,利用图象:
(1)求方程2x+6=0的解;
(2)求不等式2x+6>0的解;
(3)若-1≤y≤3,求x的取值范围.
(此题意在考查一次函数与一元一次方程和一元一次不等式(组).)
3.网络时代的到来,很多家庭都接入了网络,电信局规定了拨号入网两种收费方式,用户可以任选其一:
A:计时制:O.05元/分; B:全月制:54元/月(限一部个人住宅电话入网).此外B种上网方式要加收通信费0.02元/分.
(1)某用户某月上网的时间为x小时,两种收费方式的费用分别为y1(元)、y2(元),写出y1、y2与x之间的函数关系式.
(2)在上网时间相同的条件下,请你帮该用户选择哪种方式上网更省钱?
(此题意在考查一次函数与二元一次方程组.)
4.某服装厂现有A种布料70m,B种布料52m,现计划用这两种布料生产M、N两种型号的时装80套.已知做一套M型号的时装需要A种布料0.6m,B种布料O.9m,可获利45元,做一套N型号的时装需要A种布料1.1m,B种布料0.4m,可获利50元.若设生产N型号的时装套数为x,用这批布料生产这两种型号的时装所获的总利润为y元.
(1)求y与x的函数关系式,并求出自变量x的取值范围;
(2)该服装厂在生产这批时装中,当生产N型号的时装多少套时,所获利润最大?最大利润是多少?
(此题意在考查一次函数在解最大(小)值问题中的应用.)
1.y=2x-1;a= 3/2
2.(1)x=-3;(2)x>-3;(3)-7/2 ≤x≤-3/2
3.(1)y1=3x,y2=1.2x+54.(2)当用户某月上网时间超过30小时时,选择B种上网方式更省钱;当上网时 间为30小时时,两种上网方式费用一样;当上网时间少于30小时,选择A种上网方式更省钱.
4.(1)y=5x+3600(40≤x≤44);(2)当生产N型号的时装44套时,所获利润最大,最大利润是3820元.
(1)求此一次函数解析式;(2)若点(a,2)在函数图象上,求a的值.
(此题意在考查待定系数法.)
2.画出函数y=2x+6的图象,利用图象:
(1)求方程2x+6=0的解;
(2)求不等式2x+6>0的解;
(3)若-1≤y≤3,求x的取值范围.
(此题意在考查一次函数与一元一次方程和一元一次不等式(组).)
3.网络时代的到来,很多家庭都接入了网络,电信局规定了拨号入网两种收费方式,用户可以任选其一:
A:计时制:O.05元/分; B:全月制:54元/月(限一部个人住宅电话入网).此外B种上网方式要加收通信费0.02元/分.
(1)某用户某月上网的时间为x小时,两种收费方式的费用分别为y1(元)、y2(元),写出y1、y2与x之间的函数关系式.
(2)在上网时间相同的条件下,请你帮该用户选择哪种方式上网更省钱?
(此题意在考查一次函数与二元一次方程组.)
4.某服装厂现有A种布料70m,B种布料52m,现计划用这两种布料生产M、N两种型号的时装80套.已知做一套M型号的时装需要A种布料0.6m,B种布料O.9m,可获利45元,做一套N型号的时装需要A种布料1.1m,B种布料0.4m,可获利50元.若设生产N型号的时装套数为x,用这批布料生产这两种型号的时装所获的总利润为y元.
(1)求y与x的函数关系式,并求出自变量x的取值范围;
(2)该服装厂在生产这批时装中,当生产N型号的时装多少套时,所获利润最大?最大利润是多少?
(此题意在考查一次函数在解最大(小)值问题中的应用.)
1.y=2x-1;a= 3/2
2.(1)x=-3;(2)x>-3;(3)-7/2 ≤x≤-3/2
3.(1)y1=3x,y2=1.2x+54.(2)当用户某月上网时间超过30小时时,选择B种上网方式更省钱;当上网时 间为30小时时,两种上网方式费用一样;当上网时间少于30小时,选择A种上网方式更省钱.
4.(1)y=5x+3600(40≤x≤44);(2)当生产N型号的时装44套时,所获利润最大,最大利润是3820元.
追问
用笔要过程
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
什么玩意儿?!
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
怎么连图片也没有的
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询