已知数列{an}前n项的和为Sn,满足an=Sn•Sn-1 (n≥2,n∈N),a1=2/9
展开全部
(1)an=Sn-Sn-1=Sn*Sn-1
∴有1/Sn-1-1/Sn=1,即1/Sn-1/Sn-1=-1
1/S1=1/a1=9/2
∴{1/Sn}是以9/2为首项,-1为公差的等差数列
(2)1/Sn=9/2-(n-1)=11/2-n,∴Sn=2/(11-2n)
∴Sn-1=2/[11-2(n-1)]=2/(13-2n)
an=Sn*Sn-1=4/(11-2n)(13-2n)
当n=1时,4/(11-2)(13-2)=4/99≠2/9
∴an=2/9(n=1),an=4/(11-2n)(13-2n)(n≥2)
an/Sn=Sn-1=2/(13-2n),limn→∞,an/Sn=limn→∞,0/(-2)=0
∴有1/Sn-1-1/Sn=1,即1/Sn-1/Sn-1=-1
1/S1=1/a1=9/2
∴{1/Sn}是以9/2为首项,-1为公差的等差数列
(2)1/Sn=9/2-(n-1)=11/2-n,∴Sn=2/(11-2n)
∴Sn-1=2/[11-2(n-1)]=2/(13-2n)
an=Sn*Sn-1=4/(11-2n)(13-2n)
当n=1时,4/(11-2)(13-2)=4/99≠2/9
∴an=2/9(n=1),an=4/(11-2n)(13-2n)(n≥2)
an/Sn=Sn-1=2/(13-2n),limn→∞,an/Sn=limn→∞,0/(-2)=0
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询