如图所示,三角形ABC与三角形DEF均为等边三角形,O为BC、EF的中点,则AD:BE的值为多少?

 我来答
百度网友8d5546a
2014-05-24 · TA获得超过5.6万个赞
知道大有可为答主
回答量:1.5万
采纳率:75%
帮助的人:1744万
展开全部
解:连接OA、OD,
∵△ABC与△DEF均为等边三角形,O为BC、EF的中点,
∴AO⊥BC,DO⊥EF,∠EDO=30°,∠BAO=30°,
∴OD:OE=OA:OB=√3 :1

∵∠DOE+∠EOA=∠BOA+∠EOA 即∠DOA=∠EOB,
∴△DOA∽△EOB,
∴OD:OE=OA:OB=AD:BE=√3 :1
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式