高等代数习题求解~ 关于矩阵与多项式理论

已知A为n阶方阵A^3+4A=E求证A^2-2011A可逆谢谢大家... 已知A为n阶方阵 A^3+4A=E
求证 A^2-2011A 可逆 谢谢大家
展开
mscheng19
2012-01-01 · TA获得超过1.3万个赞
知道大有可为答主
回答量:3835
采纳率:100%
帮助的人:2278万
展开全部
(A-2011E)(A^2+2001A+(2011^2+4)E)=A^3+4A-2011*(2011^2+4)E=[1-2011*(2011^2+4)]E,故A-2011E可逆。A(A^2+4E)=E,故A可逆,A^(-1)=A^2+4E,因此A^2-2011A=A(A-2011E)可逆,(A^2-2011A)^(-1)=A^(-1)(A-2011E)^(-1)
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式