如图,在梯形ABCD中,AD平行BC,AB=DC,∠ADC=120°,对角线CA平分∠DCB,E为BC的中点,求△与四边形ABED的

如图,在梯形ABCD中,AD平行BC,AB=DC,∠ADC=120°,对角线CA平分∠DCB,E为BC的中点,求△与四边形ABED的面积比... 如图,在梯形ABCD中,AD平行BC,AB=DC,∠ADC=120°,对角线CA平分∠DCB,E为BC的中点,求△与四边形ABED的面积比 展开
Two年恭祝happy
2012-01-01 · TA获得超过5905个赞
知道小有建树答主
回答量:289
采纳率:0%
帮助的人:109万
展开全部
解:∵AD∥BC,∠ADC=120°,
∴∠DCE=60度.
又∵CA平分∠DCB,
∴∠ACD=∠ACB=30度.
∴∠CAD=30度,
∴AD=DC.
∵AB=DC,
∴∠BAD=∠ADC=120°,
∴∠BAC=90度.
在Rt△ABC中,∠ACB=30°,
∴2AB=BC.
∵E为BC的中点,∴BE=AB=AD.
∴四边形ABED为菱形.
∴△DCE与四边形ABED面积的比为1:2
q5462950
2012-01-01 · TA获得超过11.3万个赞
知道大有可为答主
回答量:5339
采纳率:71%
帮助的人:2140万
展开全部
∵∠ADC=120°,AD平行BC∴∠DCB=60°又∵AC平分∠DCB∴∠DCA=∠ACB=30°
∵AB=DC∴∠ABC=∠DCB=60°∴∠BAC=90°∵∠ACB=30°∴AB:BC=1:2
又∵E为BC中点∴AB=BE∵AD平行BC∴∠DAC=∠ACB∴AD=CD∴AD=BE
设AD为X,梯形高为H。
∴S梯形ABCD=(X+2X)H/2=3XH/2 S△DEC=XH/2
∴S梯形ABCD:S△DEC=3:1
追问
是ABED不是ABCD
本回答被提问者采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式