曲线y=1-根号下(4-x^2)与直线y=k(x-4)+3有两个交点时,求k的取值范围
2个回答
展开全部
有两个交点不可以认为有两个相同交点,有两个交点就是指有两个不同交点。
曲线y=1-根号下(4-x^2)与直线y=k(x-4)+3有两个交点时,求k的取值范围。
【解】:
y=1-√(4-x^2) ,-2≤x≤2, y≤1 .
可知y=1-√(4-x^2) 图象是圆C;x^2+(y-1)^2=4被直线L:y=1所截的下半部分。C与L交点A(-2,1)。 B(2,1) ,画出二者图像。
直线y=k(x-4)+3过定点M(4,3),
当直线过点M(4,3)和点A(2,1)时,斜率最小,kmin=(3-1)/(4-2)=1,
直线y=k(x-4)+3与半圆相切时,
圆心(0,1)到直线y=k(x-4)+3距离d=2,
|2-4k|/√(1+k^2)=2, k=0或4/3 (k=0时,直线与圆的上半部分相切,舍去),
∴1≤k<4/3.
曲线y=1-根号下(4-x^2)与直线y=k(x-4)+3有两个交点时,求k的取值范围。
【解】:
y=1-√(4-x^2) ,-2≤x≤2, y≤1 .
可知y=1-√(4-x^2) 图象是圆C;x^2+(y-1)^2=4被直线L:y=1所截的下半部分。C与L交点A(-2,1)。 B(2,1) ,画出二者图像。
直线y=k(x-4)+3过定点M(4,3),
当直线过点M(4,3)和点A(2,1)时,斜率最小,kmin=(3-1)/(4-2)=1,
直线y=k(x-4)+3与半圆相切时,
圆心(0,1)到直线y=k(x-4)+3距离d=2,
|2-4k|/√(1+k^2)=2, k=0或4/3 (k=0时,直线与圆的上半部分相切,舍去),
∴1≤k<4/3.
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询