已知等差数列{an}的公差d不等于0,数列{bn}是等比数列,a1=b1=1,a2=b2,a4=b4

已知等差数列{an}的公差d不等于0,数列{bn}是等比数列,a1=b1=1,a2=b2,a4=b41,求出数列{an}与{bn}的通项公式2,设cn=an*bn,求数列... 已知等差数列{an}的公差d不等于0,数列{bn}是等比数列,a1=b1=1,a2=b2,a4=b4
1,求出数列{an}与{bn}的通项公式
2,设cn=an*bn,求数列{cn}的前n项和Sn(写成关于n的表达式)
第一问我会an=1-3(n-1),bn=1×(-2)^(n-1)
高手们直接帮忙做第二问吧
第二问我知道要用错位相减法 关键是 这个等比bn的公比是个负数 错位相减时非常麻烦 是不是要分N为奇数和偶数呢?
展开
李纯煜
2012-01-02 · TA获得超过119个赞
知道答主
回答量:96
采纳率:0%
帮助的人:85.7万
展开全部
不需要分奇偶数
cn=an*bn=(4-3n)*(-2)^(n-1)
Sn=(4-3*1)(-2)^0+(4-3*2)(-2)^1+……+[4-3(n-1)](-2)^(n-2)+(4-3n)(-2)^(n-1)
乘上公比-2
(-2)Sn=(4-3*1)(-2)^1+(4-3*2)(-2)^2+……+[4-3(n-1)](-2)^(n-1)+(4-3n)(-2)^n
用错位相减法得
3Sn=(4-3*1)(-2)^0+(-3)*[ (-2)^1+(-2)^2+……+(-2)^(n-1)]-(4-3n)(-2)^n
=1+(-3)*[ (-2)^1+(-2)^2+……+(-2)^(n-1)] -(4-3n)(-2)^n
=1+(-3)*(-2)[ 1-(-2)^(n-1) ]/[ 1-(-2) ]-(4-3n)(-2)^n
=3[ 1+(n-1)(-2)^n ]
如果因为公比是负数比较觉得复杂,你就把它待定为q,解出Sn再代入q的值就行了,
希望你看得懂!
ztzxyzp
2012-01-01
知道答主
回答量:37
采纳率:0%
帮助的人:19.6万
展开全部
不必分奇数和偶数讨论,就以(-2)^n形式就可以了
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式