已知函数f(x)=x^3+ax^2+x+1,a属于R(1)讨论函数单调区间

 我来答
九份de咖啡店
2014-06-08 · TA获得超过2.6万个赞
知道小有建树答主
回答量:5787
采纳率:77%
帮助的人:317万
展开全部
f(x)=x^3+ax^2+x+1对此求一阶导数
f’(x)=3x^2+2ax+1
令f’(x)=0,有解,说明有驻点,无解说明此处无驻点,则定义域内单调。
1、△=4a^2-12<0时,即a∈(-√3,√3)时一阶导数无驻点,
则(-∞,+∞)是单调递增的
2、△=4a^2-12=0,a=±√3,(-∞,+∞)也是单调递增的
3、△=4a^2-12>0,a>√3或a<-√3
两根是x=-a±√(a^2-3)
(-∞,-a-√(a^2-3)〕U〔-a+√(a^2-3),+∞)是单调递增的
(-a-√(a^2-3),-a+√(a^2-3))是单调递减的。
==========
如果答案对你有所帮助,记得好评哦~~
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式