展开全部
数学测验
一、选择题(本大题共12个小题,每小题5分,共50分,)
1.sin2的值( )
A.小于0 B.大于0 C.等于0 D.不存在
2.已知 是角 终边上一点,且 ,则 = ( )
A 、 —10 B、 C、 D、
3.已知集合 , ,则 ( )
A、 B、 C、 D、
4. ( )
A. B. C. D.
5.为了得到函数y=cos2x+π3的图象,只需将函数y=sin2x的图象( )
A.向左平移5π12个长度单位 B.向右平移5π12个长度单位
C.向左平移5π6个长度单位 D.向右平移5π6个长度单位
6.已知 ,则 的值为( )
A.6 B.7 C.8 D.9
7.三个数 , , 的大小关系是( )
A. B.
C. D.
8.如果U是全集,M,P,S是U的三个子集,则
阴影部分所表示的集合为 ( )
A、(M∩P)∩S; B、(M∩P)∪S;
C、(M∩P)∩(CUS) D、(M∩P)∪(CUS)
9.方程sinπx=14x的解的个数是( )
A.5 B.6 C.7 D.8
10.如图函数f(x)=Asinωx(A>0,ω>0)一个周期的图象 ,
则f(1)+f(2)+f(3)+f(4)+f(5)+f(6)的值等于( )
A.2 B.22 C.2+2 D.22
二、填空题(本大题共4个小题,每小题5分,共25分,把正确答案填在题中横线上)
11.已知扇形的圆心角为72°,半径为20cm,则扇形的面积为________.
12.函数 的图象恒过定点 ,则 点坐标是 .
13.已知sinθ=1-a1+a,cosθ=3a-11+a,若θ为第二象限角,实数a的值为 ________.
14.若1+sin2θ=3sinθcosθ则tanθ=________.
15.定义在 上的函数 满足 且 时, ,则 _______________.
三、解答题(本大题共6个小题,共75分,解答应写出文字说明,证明过程或演算步骤)
16.(本题满分10分) 求函数y=16-x2+sinx的定义域
17.(本题满分10分) 已知
(1)化简 (2)若 是第三象限角,且 求 的值.
18、(本题满分13分)设函数 ,且 , .
(1)求 的值;(2)当 时,求 的最大值.
19.(本题满分14分)某宾馆有相同标准的床位100张,根据经验,当该宾馆的床价(即每张床每天的租金)不超过10元时,床位可以全部租出,当床位高于10元时,每提高1元,将有3张床位空闲.为了获得较好的效益,该宾馆要给床位订一个合适的价格,条件是:①床价应为1元的整数倍;②该宾馆每日的费用支出为575元,床位出租的收入必须高于支出,而且高出得越多越好.若用 表示床价,用 表示该宾馆一天出租床位的净收入(即除去每日的费用支出后的收入)
(1)把 表示成 的函数,并求出其定义域;
(2)试确定该宾馆床位定为多少时既符合上面的两个条件,又能使净收入最多?
20.(本题满分14分)右图是函数f(x)=sin(ωx+φ)在某个周期上的图像,其中 ,试依图推出:(1)f(x)的最小正周期;(2)f(x)的单调递增区间;
(3)使f(x)取最小值的x的取值集合.(4)求f(x)的解析式
21.(本题满分14分) 函数f(x)=1-2a-2acosx-2sin2x的最小值为g(a)(a∈R).
(1)求g(a); (2)若g(a)=12,求a及此时f(x)的最大值.
可以留个其它联系方式,我直接传给你几份
一、选择题(本大题共12个小题,每小题5分,共50分,)
1.sin2的值( )
A.小于0 B.大于0 C.等于0 D.不存在
2.已知 是角 终边上一点,且 ,则 = ( )
A 、 —10 B、 C、 D、
3.已知集合 , ,则 ( )
A、 B、 C、 D、
4. ( )
A. B. C. D.
5.为了得到函数y=cos2x+π3的图象,只需将函数y=sin2x的图象( )
A.向左平移5π12个长度单位 B.向右平移5π12个长度单位
C.向左平移5π6个长度单位 D.向右平移5π6个长度单位
6.已知 ,则 的值为( )
A.6 B.7 C.8 D.9
7.三个数 , , 的大小关系是( )
A. B.
C. D.
8.如果U是全集,M,P,S是U的三个子集,则
阴影部分所表示的集合为 ( )
A、(M∩P)∩S; B、(M∩P)∪S;
C、(M∩P)∩(CUS) D、(M∩P)∪(CUS)
9.方程sinπx=14x的解的个数是( )
A.5 B.6 C.7 D.8
10.如图函数f(x)=Asinωx(A>0,ω>0)一个周期的图象 ,
则f(1)+f(2)+f(3)+f(4)+f(5)+f(6)的值等于( )
A.2 B.22 C.2+2 D.22
二、填空题(本大题共4个小题,每小题5分,共25分,把正确答案填在题中横线上)
11.已知扇形的圆心角为72°,半径为20cm,则扇形的面积为________.
12.函数 的图象恒过定点 ,则 点坐标是 .
13.已知sinθ=1-a1+a,cosθ=3a-11+a,若θ为第二象限角,实数a的值为 ________.
14.若1+sin2θ=3sinθcosθ则tanθ=________.
15.定义在 上的函数 满足 且 时, ,则 _______________.
三、解答题(本大题共6个小题,共75分,解答应写出文字说明,证明过程或演算步骤)
16.(本题满分10分) 求函数y=16-x2+sinx的定义域
17.(本题满分10分) 已知
(1)化简 (2)若 是第三象限角,且 求 的值.
18、(本题满分13分)设函数 ,且 , .
(1)求 的值;(2)当 时,求 的最大值.
19.(本题满分14分)某宾馆有相同标准的床位100张,根据经验,当该宾馆的床价(即每张床每天的租金)不超过10元时,床位可以全部租出,当床位高于10元时,每提高1元,将有3张床位空闲.为了获得较好的效益,该宾馆要给床位订一个合适的价格,条件是:①床价应为1元的整数倍;②该宾馆每日的费用支出为575元,床位出租的收入必须高于支出,而且高出得越多越好.若用 表示床价,用 表示该宾馆一天出租床位的净收入(即除去每日的费用支出后的收入)
(1)把 表示成 的函数,并求出其定义域;
(2)试确定该宾馆床位定为多少时既符合上面的两个条件,又能使净收入最多?
20.(本题满分14分)右图是函数f(x)=sin(ωx+φ)在某个周期上的图像,其中 ,试依图推出:(1)f(x)的最小正周期;(2)f(x)的单调递增区间;
(3)使f(x)取最小值的x的取值集合.(4)求f(x)的解析式
21.(本题满分14分) 函数f(x)=1-2a-2acosx-2sin2x的最小值为g(a)(a∈R).
(1)求g(a); (2)若g(a)=12,求a及此时f(x)的最大值.
可以留个其它联系方式,我直接传给你几份
追问
qq邮箱 956408102@qq.com 谢谢你
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询