急急急急急急!!!!!!!!!
1个回答
2014-10-13
展开全部
解:(1)
①连接BD,
∵AB=BC ∠ABC=90°
∴△ABC是等腰直角三角形,
∴∠A=∠C=45°
∵D是AC的中点
∴BD是△ABC的中线
∴BD是△ABC的高
∴∠BDC=90°
∴∠DBC=45°=∠DCB
∴BD=CD=AD
∴∠DBC=∠DAB=45°
∵∠EDF=90°=∠ADB ∠EDB为公共角
∴∠ADM=∠BDN
∴△ADM≌△BDN(ASA)
∴DM=DN.
②四边形DMBN的面积不发生变化,理由如下:
由①可知S△ADM=S△BDN
∴S四边形DMBN=S△ADB
已知△ADB的面积是一个定值
∴四边形DMBN的面积不发生变化
∵AB=AC=1,S△ADB=1/2S△ABC
∴S四边形DMBN=S△ABD=1/2S△ABC=1/4
①连接BD,
∵AB=BC ∠ABC=90°
∴△ABC是等腰直角三角形,
∴∠A=∠C=45°
∵D是AC的中点
∴BD是△ABC的中线
∴BD是△ABC的高
∴∠BDC=90°
∴∠DBC=45°=∠DCB
∴BD=CD=AD
∴∠DBC=∠DAB=45°
∵∠EDF=90°=∠ADB ∠EDB为公共角
∴∠ADM=∠BDN
∴△ADM≌△BDN(ASA)
∴DM=DN.
②四边形DMBN的面积不发生变化,理由如下:
由①可知S△ADM=S△BDN
∴S四边形DMBN=S△ADB
已知△ADB的面积是一个定值
∴四边形DMBN的面积不发生变化
∵AB=AC=1,S△ADB=1/2S△ABC
∴S四边形DMBN=S△ABD=1/2S△ABC=1/4
追问
那(2)呢
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询