
展开全部
证明:∵在RtΔABC中,AD⊥BC
∴∠BAD=∠ACB=∠F
∵E是AC的中点
∴DE=EC
∴∠EDC=∠ECD=∠BDF=∠F
∴BD= BF
∴∠BDF=∠BAD
∵∠F=∠F
∴ΔADF∽ΔBDF
BD/AD=DF/AF
∵RtΔBDA∽RtΔBAC
∴BD/AD=AB/AC
∴DF/AF=AB/AC
∴AB·AF=AC·DF
∴∠BAD=∠ACB=∠F
∵E是AC的中点
∴DE=EC
∴∠EDC=∠ECD=∠BDF=∠F
∴BD= BF
∴∠BDF=∠BAD
∵∠F=∠F
∴ΔADF∽ΔBDF
BD/AD=DF/AF
∵RtΔBDA∽RtΔBAC
∴BD/AD=AB/AC
∴DF/AF=AB/AC
∴AB·AF=AC·DF
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询