如果一个三角形的一个内角等于另一个内角的2倍,我们称这样的三角形为“倍角三角形
(2005•天津)在△ABC中,∠A、∠B、∠C所对的边分别用a、b、c表示.(1)如图,在△ABC中,∠A=2∠B,且∠A=60度.求证:a2=b(b+c)...
(2005•天津)在△ABC中,∠A、∠B、∠C所对的边分别用a、b、c表示.
(1)如图,在△ABC中,∠A=2∠B,且∠A=60度.求证:a2=b(b+c).
(2)如果一个三角形的一个内角等于另一个内角的2倍,我们称这样的三角形为“倍角三角形”.第一问中的三角形是一个特殊的倍角三角形,那么对于任意的倍角三角形ABC,其中∠A=2∠B,关系式a2=b(b+c)是否仍然成立?并证明你的结论.
(3)试求出一个倍角三角形的三条边的长,使这三条边长恰为三个连续的正整数. 展开
(1)如图,在△ABC中,∠A=2∠B,且∠A=60度.求证:a2=b(b+c).
(2)如果一个三角形的一个内角等于另一个内角的2倍,我们称这样的三角形为“倍角三角形”.第一问中的三角形是一个特殊的倍角三角形,那么对于任意的倍角三角形ABC,其中∠A=2∠B,关系式a2=b(b+c)是否仍然成立?并证明你的结论.
(3)试求出一个倍角三角形的三条边的长,使这三条边长恰为三个连续的正整数. 展开
1个回答
展开全部
例1(天津市中考题)在△ABC中,∠A、∠B、∠C所对应的边分别用a、b、c表示。
⑴如图1,在△ABC中,∠A=2∠B,且∠A=60°。求证:a2=b(b+c)
⑵如果一个三角形的一个内角等于另一个内角的2倍,我们称这样的三角形为“倍角三角形”。本题第一问中的三角形是一个特殊的倍角三角形,那么对于任意的倍角△ABC,如图2,∠A=2∠B,关系式a2=b(b+c)是否仍然成立?并证明你的结论。
分析:⑴在△ABC中,∠A=2∠B,且∠A=60°,△ABC为Rt△,∠C=90°。
证法1:Rt△ACB中a=c,b=c,
所以a2=(c)2=,b(b+c)=c(c+c)=,
所以a2=b(b+c)。
⑵对于任意的倍角△ABC,∠A=2∠B,关系式a2=b(b+c)仍然成立。
如图2,延长BA至D,使AD=AC=b,连CD。
则∠CAB=2∠D,∴∠B=∠D,BC=CD=a,
由△ADC∽△CDB ,即。
所以a2=b(b+c)。
由以上的证明,可以得到关于倍角三角形的一个结论:一个三角形中有一个角等于另一个角的两倍,2倍角所对边的平方等于一倍角所对边乘该边与第三边的和。
⑴如图1,在△ABC中,∠A=2∠B,且∠A=60°。求证:a2=b(b+c)
⑵如果一个三角形的一个内角等于另一个内角的2倍,我们称这样的三角形为“倍角三角形”。本题第一问中的三角形是一个特殊的倍角三角形,那么对于任意的倍角△ABC,如图2,∠A=2∠B,关系式a2=b(b+c)是否仍然成立?并证明你的结论。
分析:⑴在△ABC中,∠A=2∠B,且∠A=60°,△ABC为Rt△,∠C=90°。
证法1:Rt△ACB中a=c,b=c,
所以a2=(c)2=,b(b+c)=c(c+c)=,
所以a2=b(b+c)。
⑵对于任意的倍角△ABC,∠A=2∠B,关系式a2=b(b+c)仍然成立。
如图2,延长BA至D,使AD=AC=b,连CD。
则∠CAB=2∠D,∴∠B=∠D,BC=CD=a,
由△ADC∽△CDB ,即。
所以a2=b(b+c)。
由以上的证明,可以得到关于倍角三角形的一个结论:一个三角形中有一个角等于另一个角的两倍,2倍角所对边的平方等于一倍角所对边乘该边与第三边的和。
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询
广告 您可能关注的内容 |