![](https://iknow-base.cdn.bcebos.com/lxb/notice.png)
在△ABC中,AB=BC,∠ABC=120°,将△ABC绕点B逆时针旋转α,其中0°<α<90°得△A1BC1,A1B交AC与点E
在△ABC中,AB=BC,∠ABC=120°,将△ABC绕点B逆时针旋转α,其中0°<α<90°得△A1BC1,A1B交AC与点E,A1C1分别交AC、BC于D、F两点....
在△ABC中,AB=BC,∠ABC=120°,将△ABC绕点B逆时针旋转α,其中0°<α<90°得△A1BC1,A1B交AC与点E,A1C1分别交AC、BC于D、F两点.(1)在旋转过程中,线段EA1与FC有怎样的数量关系?证明你的结论;(2)当α=30°时,试判断四边形BC1DA的形状,并说明理由.
展开
1个回答
展开全部
(1)EA1=FC.理由如下:
∵AB=BC,∠ABC=120°,
∴∠A=∠C=30°,
∵△ABC绕点B逆时针旋转α,其中0°<α<90°得△A1BC1,
∴∠ABE=∠FBC1=α,∠C1=∠C=30°,BC1=BC,BA=BA1,
∴BA=BC1,
在△BAE和△BC1F中
,
∴△BAE≌△BC1F,
∴BE=BF,
∵BA1=BC=BA,
∴EA1=FC;
(2)四边形BC1DA为菱形.理由如下:
∵α=30°,
∴∠ABA1=∠CBC1=30°,
而∠A1=∠C=30°,
∴∠ABA1=∠A1,∠CBC1=∠C,
∴AB∥A1C1,BC1∥AC,
∴四边形BC1DA为平行四边形,
∵BA=BC1,
∴四边形BC1DA为菱形.
∵AB=BC,∠ABC=120°,
∴∠A=∠C=30°,
∵△ABC绕点B逆时针旋转α,其中0°<α<90°得△A1BC1,
∴∠ABE=∠FBC1=α,∠C1=∠C=30°,BC1=BC,BA=BA1,
∴BA=BC1,
在△BAE和△BC1F中
|
∴△BAE≌△BC1F,
∴BE=BF,
∵BA1=BC=BA,
∴EA1=FC;
(2)四边形BC1DA为菱形.理由如下:
∵α=30°,
∴∠ABA1=∠CBC1=30°,
而∠A1=∠C=30°,
∴∠ABA1=∠A1,∠CBC1=∠C,
∴AB∥A1C1,BC1∥AC,
∴四边形BC1DA为平行四边形,
∵BA=BC1,
∴四边形BC1DA为菱形.
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询