如图,在四棱锥P-ABCD中,侧面PAD是正三角形,且与底面ABCD垂直,底面ABCD是边长为2的菱形,∠BAD=60°,
如图,在四棱锥P-ABCD中,侧面PAD是正三角形,且与底面ABCD垂直,底面ABCD是边长为2的菱形,∠BAD=60°,N是PB中点,截面DAN交PC于M.(Ⅰ)求PB...
如图,在四棱锥P-ABCD中,侧面PAD是正三角形,且与底面ABCD垂直,底面ABCD是边长为2的菱形,∠BAD=60°,N是PB中点,截面DAN交PC于M.(Ⅰ)求PB与平面ABCD所成角的大小;(Ⅱ)求证:PB⊥平面ADMN;(Ⅲ)求以AD为棱,PAD与ADMN平面的锐二面角余弦值大小.
展开
1个回答
展开全部
(I)解:取AD中点O,连接PO,BO.如图所示.
∵△PAD是正三角形,∴PO⊥AD,
又∵平面PAD⊥平面ABCD,
∴PO⊥平面ABCD,
∴BO为PB在平面ABCD上的射影,
∴∠PBO为PB与平面ABCD所成的角.
由已知△ABD为等边三角形,∴PO=BO=
,
∴PB与平面ABCD所成的角为45°.
(Ⅱ)证明:由菱形ABCD及∠BAD=60°可得△ABD是正三角形,∴AD⊥BO,∴AD⊥PB,
又PA=AB=2,N为PB中点,∴AN⊥PB,
∵AN∩AD=A,
∴PB⊥平面ADMN.
(Ⅲ)证明:连接ON,∵PB⊥平面ADMN,∴ON为PO在平面ADMN上的射影,
∵AD⊥PO,∴AD⊥NO,
故∠PON为所求二面角的平面角.
∵△POB为等腰直角三角形,N为斜边中点,∴∠PON=45°
COS∠PON=
,
∴面PAD与ADMN平面所成锐二面角余弦值为
.
∵△PAD是正三角形,∴PO⊥AD,
又∵平面PAD⊥平面ABCD,
∴PO⊥平面ABCD,
∴BO为PB在平面ABCD上的射影,
∴∠PBO为PB与平面ABCD所成的角.
由已知△ABD为等边三角形,∴PO=BO=
3 |
∴PB与平面ABCD所成的角为45°.
(Ⅱ)证明:由菱形ABCD及∠BAD=60°可得△ABD是正三角形,∴AD⊥BO,∴AD⊥PB,
又PA=AB=2,N为PB中点,∴AN⊥PB,
∵AN∩AD=A,
∴PB⊥平面ADMN.
(Ⅲ)证明:连接ON,∵PB⊥平面ADMN,∴ON为PO在平面ADMN上的射影,
∵AD⊥PO,∴AD⊥NO,
故∠PON为所求二面角的平面角.
∵△POB为等腰直角三角形,N为斜边中点,∴∠PON=45°
COS∠PON=
| ||
2 |
∴面PAD与ADMN平面所成锐二面角余弦值为
| ||
2 |
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询