如图,在四棱锥P-ABCD中,侧面PAD是正三角形,且与底面ABCD垂直,底面ABCD是边长为2的菱形,∠BAD=60°,

如图,在四棱锥P-ABCD中,侧面PAD是正三角形,且与底面ABCD垂直,底面ABCD是边长为2的菱形,∠BAD=60°,N是PB中点,截面DAN交PC于M.(Ⅰ)求PB... 如图,在四棱锥P-ABCD中,侧面PAD是正三角形,且与底面ABCD垂直,底面ABCD是边长为2的菱形,∠BAD=60°,N是PB中点,截面DAN交PC于M.(Ⅰ)求PB与平面ABCD所成角的大小;(Ⅱ)求证:PB⊥平面ADMN;(Ⅲ)求以AD为棱,PAD与ADMN平面的锐二面角余弦值大小. 展开
 我来答
陡变吧CGP
推荐于2016-05-03 · TA获得超过131个赞
知道答主
回答量:118
采纳率:100%
帮助的人:112万
展开全部
(I)解:取AD中点O,连接PO,BO.如图所示.
∵△PAD是正三角形,∴PO⊥AD,
又∵平面PAD⊥平面ABCD,
∴PO⊥平面ABCD,
∴BO为PB在平面ABCD上的射影,
∴∠PBO为PB与平面ABCD所成的角.
由已知△ABD为等边三角形,∴PO=BO=
3

∴PB与平面ABCD所成的角为45°.
(Ⅱ)证明:由菱形ABCD及∠BAD=60°可得△ABD是正三角形,∴AD⊥BO,∴AD⊥PB,
又PA=AB=2,N为PB中点,∴AN⊥PB,
∵AN∩AD=A,
∴PB⊥平面ADMN.
(Ⅲ)证明:连接ON,∵PB⊥平面ADMN,∴ON为PO在平面ADMN上的射影,
∵AD⊥PO,∴AD⊥NO,
故∠PON为所求二面角的平面角.
∵△POB为等腰直角三角形,N为斜边中点,∴∠PON=45°
COS∠PON=
2
2

∴面PAD与ADMN平面所成锐二面角余弦值为
2
2
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式